1887

Abstract

The E6 protein of the high-risk human papillomavirus type 16 (HPV-16) is involved in the tumorigenesis of human cervical cells by targeting numerous cellular proteins. We characterized new anti-E6 monoclonal antibodies and used them for precise localization of the E6 oncoprotein within carcinoma cells. Overexpressed E6 protein was predominantly detected in the nucleus of transiently transfected HaCaT cells. While mostly localized at the periphery of condensed chromatin, E6 was also associated with nuclear ribonucleoproteic ultrastructures and with some ribosomal areas in the cytoplasm of SiHa and CaSki cells. The chimeric -galactosidase–E6 protein expressed in transfected HeLa cells was essentially localized in the nuclear compartment. Together, these data indicate that the E6 sequence of HPV-16 may encode a nuclear localization signal. The preferential nuclear distribution of this viral oncoprotein in HPV-transformed cells correlates with its activities at the transcriptional level.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18961-0
2003-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842099.html?itemId=/content/journal/jgv/10.1099/vir.0.18961-0&mimeType=html&fmt=ahah

References

  1. Bernhard W. 1969; A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27:250–265
    [Google Scholar]
  2. Choulier L., Orfanoudakis G., Robinson P., Laune D., Ben Khalifa M., Granier C., Weiss E., Altschuh D. 2002; Comparative properties of two peptide–antibody interactions as deduced from epitope delineation. J Immunol Methods 259:77–86
    [Google Scholar]
  3. Cmarko D., Verschure P. J., Martin T. E., Dahmus M. E., Krause S., Fu X. D., van Driel R., Fakan S. 1999; Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell 10:211–223
    [Google Scholar]
  4. Daniels P. R., Sanders C. M., Maitland N. J. 1998; Characterization of the interactions of human papillomavirus type 16 E6 with p53 and E6-associated protein in insect and human cells. J Gen Virol 79:489–499
    [Google Scholar]
  5. Giovane C., Travé G., Briones A., Lutz Y., Wasylyk B., Weiss E. 1999; Targetting of the N-terminal domain of the human papillomavirus type 16 E6 oncoprotein with monomeric ScFvs blocks the E6-mediated degradation of cellular p53. J Mol Recognit 12:141–152
    [Google Scholar]
  6. Gross-Mesilaty S., Reinstein E., Bercovich B., Tobias K. E., Schwartz A. L., Kahana C., Ciechanover A. 1998; Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A 95:8058–8063
    [Google Scholar]
  7. Guccione E., Massimi P., Bernat A., Banks L. 2002; Comparative analysis of the intracellular location of the high- and low-risk human papillomavirus oncoproteins. Virology 293:20–25
    [Google Scholar]
  8. Hendzel M. J., Kruhlak M. J., Bazett-Jones D. P. 1998; Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 9:2491–2507
    [Google Scholar]
  9. Kanda T., Watanabe S., Zanma S., Sato H., Furuno A., Yoshiike K. 1991; Human papillomavirus type 16 E6 proteins with glycine substitution for cysteine in the metal-binding motif. Virology 185:536–543
    [Google Scholar]
  10. Klingelhutz A. J., Foster S. A., McDougall J. K. 1996; Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82
    [Google Scholar]
  11. Kumar A., Zhao Y., Meng G. 9 other authors 2002; Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol 22:5801–5812
    [Google Scholar]
  12. Lechner M. S., Mack D. H., Finicle A. B., Crook T., Vousden K. H., Laimins L. A. 1992; Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO J 11:3045–3052
    [Google Scholar]
  13. Le Roux L. G., Moroianu J. 2003; Nuclear entry of high-risk human papillomavirus type 16 E6 oncoprotein occurs via several pathways. J Virol 77:2330–2337
    [Google Scholar]
  14. Liang X. H., Volkmann M., Klein R., Herman B., Lockett S. J. 1993; Co-localization of the tumor-suppressor protein p53 and human papillomavirus E6 protein in human cervical carcinoma cell lines. Oncogene 8:2645–2652
    [Google Scholar]
  15. Mantovani F., Banks L. 2001; The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887
    [Google Scholar]
  16. Patel D., Huang S. M., Baglia L. A., McCance D. J. 1999; The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J 18:5061–5072
    [Google Scholar]
  17. Pim D., Thomas M., Javier R., Gardiol D., Banks L. 2000; HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19:719–725
    [Google Scholar]
  18. Ristriani T., Masson M., Nominé Y., Laurent C., Lefèvre J. F., Weiss E., Travé G. 2000; HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions. J Mol Biol 296:1189–1203
    [Google Scholar]
  19. Ristriani T., Nominé Y., Masson M., Weiss E., Travé G. 2001; Specific recognition of four-way DNA junctions by the C-terminal zinc-binding domain of HPV oncoprotein E6. J Mol Biol 305:729–739
    [Google Scholar]
  20. Ronco L. V., Karpova A. Y., Vidal M., Howley P. M. 1998; Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12:2061–2072
    [Google Scholar]
  21. Scheffner M., Takahashi T., Huibregtse J. M., Minna J. D., Howley P. M. 1992; Interaction of the human papillomavirus type 16 E6 oncoprotein with wild-type and mutant human p53 proteins. J Virol 66:5100–5105
    [Google Scholar]
  22. Schwalbach G., Sibler A. P., Choulier L., Deryckere F., Weiss E. 2000; Production of fluorescent single-chain antibody fragments in Escherichia coli . Protein Expr Purif 18:121–132
    [Google Scholar]
  23. Sherman L., Schlegel R. 1996; Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol 70:3269–3279
    [Google Scholar]
  24. Sorg G., Stamminger T. 1999; Mapping of nuclear localization signals by simultaneous fusion to green fluorescent protein and to β -galactosidase. Biotechniques 26:858–862
    [Google Scholar]
  25. Spector D. L., Fu X. D., Maniatis T. 1991; Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481
    [Google Scholar]
  26. Stoeckel M. E., Schimchowitsch S., Garaud J. C., Schmitt G., Vaudry H., Klein M. J., Porte A. 1985; Immunocytochemical evidence for intragranular processing of pro-opiomelanocortin in the melanotropic cells of the rabbit. Cell Tissue Res 242:365–370
    [Google Scholar]
  27. Weiss D. J., Ligitt D., Clark J. G. 1997; In situ histochemical detection of β -galactosidase activity in lung: assessment of X-Gal reagent in distinguishing lacZ gene expression and endogeous β -galactosidase activity. Hum Gene Ther 8:1545–1554
    [Google Scholar]
  28. Yoneda Y. 2000; Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells 5:777–787
    [Google Scholar]
  29. zur Hausen H. 1999; Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol 9:405–411
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18961-0
Loading
/content/journal/jgv/10.1099/vir.0.18961-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error