1887

Abstract

The picornavirus foot-and-mouth disease virus 2A sequence was combined with three different internal ribosome entry segments to construct and characterize three independent pentacistronic retroviruses of different sizes. Efficient co-expression of the five proteins was successful and titres obtained for these pentacistronic virus vectors (final genome size ∼7·9 kb) were comparable to those of vector systems with shorter genomes. Other vectors constructed that exceeded the genome length of the wild-type virus suffered frequent deletions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18998-0
2003-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841281.html?itemId=/content/journal/jgv/10.1099/vir.0.18998-0&mimeType=html&fmt=ahah

References

  1. Adam M. A., Ramesh N., Miller A. D., Osborne W. R. 1991; Internal initiation of translation in retroviral vectors carrying picornavirus 5′ nontranslated regions. J Virol 65:4985–4990
    [Google Scholar]
  2. Burns D. P., Temin H. M. 1994; High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication. J Virol 68:4196–4203
    [Google Scholar]
  3. Carroll M. W., Overwijk W. W., Surman D. R., Tsung K., Moss B., Restifo N. P. 1998; Construction and characterization of a triple-recombinant vaccinia virus encoding B7-1, interleukin 12, and a model tumor antigen. J Natl Cancer Inst 90:1881–1887
    [Google Scholar]
  4. de Felipe P., Izquierdo M. 2000; Tricistronic and tetracistronic retroviral vectors for gene transfer. Hum Gene Ther 11:1921–1931
    [Google Scholar]
  5. Ghattas I. R., Sanes J. R., Majors J. E. 1991; The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11:5848–5859
    [Google Scholar]
  6. Hellen C. U. T., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612
    [Google Scholar]
  7. Izquierdo M., Cortés M. L., Martín V., de Felipe P., Izquierdo J. M., Pérez-Higueras A., Paz J. F., Isla A., Blázquez M. G. 1997; Gene therapy in brain tumours: implication of the size of glioblastoma on its curability. Acta Neurochir Suppl 68:111–117
    [Google Scholar]
  8. Krisky D. M., Marconi P. C., Oligino T. J., Rouse R. J., Fink D. J., Cohen J. B., Watkins S. C., Glorioso J. C. 1998; Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 5:1517–1530
    [Google Scholar]
  9. Logg C. R., Tai C.-K., Logg A., Anderson W. F., Kasahara N. 2001a; A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther 12:921–932
    [Google Scholar]
  10. Logg C. R., Logg A., Tai C.-K., Cannon P. M., Kasahara N. 2001b; Genomic stability of murine leukemia viruses containing insertions at the Env-3′ untranslated region boundary. J Virol 75:6989–6998
    [Google Scholar]
  11. Luke G. A., Ryan M. D. 2001; Translating the message. Biologist (London) 48:79–82
    [Google Scholar]
  12. Martín V., Cortés M. L., de Felipe P., Farsetti A., Calcaterra N. B., Izquierdo M. 2000; Cancer gene therapy by thyroid hormone-mediated expression of toxin genes. Cancer Res 60:3218–3224
    [Google Scholar]
  13. Martínez-Salas E. 1999; Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10:458–464
    [Google Scholar]
  14. Martínez-Salas E., Saiz J. C., Davila M., Belsham G. J., Domingo E. 1993; A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo . J Virol 67:3748–3755
    [Google Scholar]
  15. Miller A. D., Rosman G. J. 1989; Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–988
    [Google Scholar]
  16. Morgan R. A., Couture L., Elroy-Stein O., Ragheb J., Moss B., Anderson W. F. 1992; Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res 20:1293–1299
    [Google Scholar]
  17. Morgenstern J. P., Land H. 1990; Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596
    [Google Scholar]
  18. Pathak V. K., Temin H. M. 1990; Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci U S A 87:6019–6023
    [Google Scholar]
  19. Ryan M. D., Drew J. 1994; Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13:928–933
    [Google Scholar]
  20. Sugimoto Y., Aksentijevich I., Gottesman M. M., Pastan I. 1994; Efficient expression of drug-selectable genes in retroviral vectors under control of an internal ribosome entry site. Biotechnology 12:694–698
    [Google Scholar]
  21. Weiss R., Teich N., Varmus H., Coffin J. (editors) 1985 In RNA Tumor Viruses , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18998-0
Loading
/content/journal/jgv/10.1099/vir.0.18998-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error