Identification of a calicivirus isolate of unknown origin Oehmig, Angelika and Büttner, Mathias and Weiland, Frank and Werz, William and Bergemann, Klaus and Pfaff, Eberhard,, 84, 2837-2845 (2003), doi = https://doi.org/10.1099/vir.0.19042-0, publicationName = Microbiology Society, issn = 0022-1317, abstract= Chinese hamster ovary (CHO) cells manifesting striking cytopathogenic changes in culture were investigated to determine the causative agent. Electron microscopic analyses revealed viral particles of about 40 nm in diameter, displaying typical calicivirus morphology. To date, this virus, designated isolate 2117, exclusively replicates in CHO cells, achieving only moderate titres. After cloning, the coding region of 7928 nucleotides, the 3′ non-coding region and the poly(A) tail were sequenced. The genome consists of three open reading frames (ORFs), with the first and second ORF having the same reading frame. The overall genomic organization as well as the nucleotide sequence of isolate 2117 is most similar to that of a recently described canine calicivirus, but also shows significant similarity to the sequences of mink calicivirus and other caliciviruses within the genus Vesivirus. In Western blots, using antibodies against the viral protease, a stable, unprocessed 3CD protein of 68 kDa was identified in homogenates of 2117-infected CHO cells. Furthermore, antibodies raised against ORF 3 reacted with the respective protein in 2117-virions, demonstrating that this predicted 9 kDa protein is a minor structural component of the virion. In addition, an RT-PCR assay was established to detect 2117 viral RNA in biological products such as foetal bovine serum, which will aid the discovery of the origin and host of the virus., language=, type=