1887

Abstract

Human papillomavirus type 16 (HPV-16) is the prototype strain among the malignant types of HPV in the western world. The main promoter, P97, located in front of the E6 ORF, has been shown to control expression of the oncogenes E6 and E7. These oncogenes are expressed continuously in HPV-16-transformed cells. In contrast to malignant HPV types, non-malignant HPV types have separate promoters driving the expression of E6 and E7. Experiments have shown that the translation of E7 is more efficient from monocistronic than bicistronic transcripts encoding both E6 and E7. Here, identification of a cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster around nt 480. A transcription start site has been identified previously at nt 480 but has never been characterized further. The region responsible for transcription activity was mapped to nt 272–448. Mutational analysis showed that initiation of transcription is independent of a TATA-box element, which is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291–314 and 388–411, and that these two regions influence transcription activity in a cell type-dependent manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19332-0
2003-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir842909.html?itemId=/content/journal/jgv/10.1099/vir.0.19332-0&mimeType=html&fmt=ahah

References

  1. Ai W., Toussaint E., Roman A. 1999; CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J Virol 73:4220–4229
    [Google Scholar]
  2. Braunstein T. H., Madsen B. S., Gavnholt B., Rosenstierne M. W., Koefeld Johnsen C., Norrild B. 1999; Identification of a new promoter in the early region of the human papillomavirus type 16 genome. J Gen Virol 80:3241–3250
    [Google Scholar]
  3. Butler J. E. F., Kadonaga J. T. 2002; The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592
    [Google Scholar]
  4. Chenchik A., Zhu Y. Y., Diatchenko L., Li R., Hill J., Siebert P. D. 1998; Generation and use of high-quality cDNA from small amounts of total RNA by SMARTTM PCR. In Gene Cloning and Analysis by RT-PCR Biotechniques Books: Eaton;
    [Google Scholar]
  5. Chow L. T., Nasseri M., Wolinsky S. M., Broker T. R. 1987; Human papillomavirus type 6 and 11 mRNAs from genital condylomata acuminata. J Virol 61:2581–2588
    [Google Scholar]
  6. del Mar Peña L. M., Laimins L. A. 2001; Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol 75:10005–10013
    [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489
    [Google Scholar]
  8. DiLorenzo T. P., Steinberg B. M. 1995; Differential regulation of human papillomavirus type 6 and 11 early promoters in cultured cells derived form laryngeal papillomas. J Virol 69:6865–6872
    [Google Scholar]
  9. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. 1990; Detection of novel splicing patterns in an HPV16-containing keratinocyte cell line. Virology 178:254–262
    [Google Scholar]
  10. Doorbar J., Elston R. C., Napthine S. 9 other authors 2000; The E1E4 protein of human papillomavirus type 16 associates with a putative RNA helicase through sequences in its C terminus. J Virol 74:10081–10095
    [Google Scholar]
  11. Glahder J. A., Hansen C. N., Vinther J., Madsen B. S., Norrild B. 2003; A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA. J Gen Virol (in Press)
    [Google Scholar]
  12. Grassmann K., Rapp B., Maschek H., Petry K. U., Iftner T. 1996; Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol 70:2339–2349
    [Google Scholar]
  13. Ince T. A., Scotto K. W. 1995; A conserved downstream element defines a new class of RNA polymerase II promoters. J Biol Chem 270:30249–30252
    [Google Scholar]
  14. Karlen S., Offord E. A., Beard P. 1996; Functional promoters in the genome of human papillomavirus type 6b. J Gen Virol 77:11–16
    [Google Scholar]
  15. Klumpp D. J., Laimins L. A. 1999; Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1. Virology 257:239–246
    [Google Scholar]
  16. Nasseri M., Hirochika R., Broker T. R., Chow L. T. 1987; A human papilloma virus type 11 transcript encoding an E1^E4 protein. Virology 159:433–439
    [Google Scholar]
  17. Nishimura A., Ono T., Ishimoto A., Dowhanick J. J., Frizzell M. A., Howley P. M., Sakai H. 2000; Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J Virol 74:3752–3760
    [Google Scholar]
  18. O'Connor M. J., Chan S. Y., Bernard H.-U. 1995; Transcription factor binding sites in the long control regions of genital HPVs. In Human Papillomaviruses 1995 Compendium vol IIIA pp  21–40 Los Alamos, NM: Los Alamos National Laboratory;
    [Google Scholar]
  19. O'Connor M. J., Stünkel W., Zimmermann H., Koh C.-H., Bernard H.-U. 1998; A novel YY1-independent silencer represses the activity of the human papillomavirus type 16 enhancer. J Virol 72:10083–10092
    [Google Scholar]
  20. O'Connor M. J., Stünkel W., Koh C.-H., Zimmermann H., Bernard H.-U. 2000; The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol 74:401–410
    [Google Scholar]
  21. Ozbun M. A., Meyers C. 1997; Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71:5161–5172
    [Google Scholar]
  22. Ozbun M. A., Meyers C. 1998; Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol 72:2715–2722
    [Google Scholar]
  23. Phelps W. C., Barnes J. A., Lobe D. C. 1998; Molecular targets for human papillomaviruses: prospects for antiviral therapy. Antivir Chem Chemother 9:359–377
    [Google Scholar]
  24. Schmidt W., Mueller M. W. 1999; CapSelect: a highly sensitive method for 5′ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNA. Nucleic Acids Res 27:e31
    [Google Scholar]
  25. Schneider-Gädicke A., Schwarz E. 1986; Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J 5:2285–2292
    [Google Scholar]
  26. Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. 1985; Human papilloma virus type 16 DNA sequence. Virology 145:181–185
    [Google Scholar]
  27. Smotkin D., Prokoph H., Wettstein F. O. 1989; Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol 63:1441–1447
    [Google Scholar]
  28. Stacey S. N., Jordan D., Snijders P. F. J., Mackett M., Walboomers J. M. M., Arrand J. R. 1995; Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. J Virol 69:7023–7031
    [Google Scholar]
  29. Stünkel W., Bernard H.-U. 1999; The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol 73:1918–1930
    [Google Scholar]
  30. Stünkel W., Huang Z., Tan S.-H., O'Connor M. J., Bernard H.-U. 2000; Nuclear matrix attachment regions of human papillomavirus type 16 repress or activate the E6 promoter, depending on the physical state of the viral DNA. J Virol 74:2489–2501
    [Google Scholar]
  31. Tan S.-H., Leong L. E. C., Walker P. A., Bernard H.-U. 1994; The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol 68:6411–6420
    [Google Scholar]
  32. Tan S.-H., Bartsch D., Schwarz E., Bernard H.-U. 1998; Nuclear matrix attachment regions of human papillomavirus type 16 point toward conservation of these genomic elements in all genital papillomaviruses. J Virol 72:3610–3622
    [Google Scholar]
  33. Thierry F., Heard J. M., Dartmann K., Yaniv M. 1987; Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigenes. J Virol 61:134–142
    [Google Scholar]
  34. Tomita Y., Shiga T., Simizu B. 1996; Characterization of a promoter in the E7 open reading frame of human papillomavirus type 11. Virology 225:267–273
    [Google Scholar]
  35. Ushikai M., Lace M. J., Yamakawa Y. 9 other authors 1994; Trans activation by the full-length E2 proteins of human papillomavirus type 16 and bovine papillomavirus type 1 in vitro and in vivo : cooperation with activation domains of cellular transcription factors. J Virol 68:6655–6666
    [Google Scholar]
  36. Zhao W., Chow L. T., Broker T. R. 1997; Transcription activities of human papillomavirus type 11 E6 promoter-proximal elements in raft and submerged cultures of foreskin keratinocytes. J Virol 71:8832–8840
    [Google Scholar]
  37. zur Hausen H. 1996; Papillomavirus infections: a major cause of human cancers. Biochim Biophys Acta 1288:F55–F78
    [Google Scholar]
  38. zur Hausen H. 1999 Papillomaviruses in Human Cancers vol 111 pp  581–587 Proceedings of the Association of American Physicians;
    [Google Scholar]
  39. Zwerschke W., Jansen-Dürr P. 2000; Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins. Adv Cancer Res 78:1–29
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19332-0
Loading
/content/journal/jgv/10.1099/vir.0.19332-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error