1887

Abstract

Presented here is a comprehensive computational survey of evolutionarily conserved secondary structure motifs in the genomic RNAs of the family . This virus family consists of the three genera , and and the group of GB virus C/hepatitis G virus with a currently uncertain taxonomic classification. Based on the control of replication and translation, two subgroups were considered separately: the genus , with its type I cap structure at the 5′ untranslated region (UTR) and a highly structured 3′ UTR, and the remaining three groups, which exhibit translation control by means of an internal ribosomal entry site (IRES) in the 5′ UTR and a much shorter less-structured 3′ UTR. The main findings of this survey are strong hints for the possibility of genome cyclization in hepatitis C virus and GB virus C/hepatitis G virus in addition to the flaviviruses; a surprisingly large number of conserved RNA motifs in the coding regions; and a lower level of detailed structural conservation in the IRES and 3′ UTR motifs than reported in the literature. An electronic atlas organizes the information on the more than 150 conserved, and therefore putatively functional, RNA secondary structure elements.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19462-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851113.html?itemId=/content/journal/jgv/10.1099/vir.0.19462-0&mimeType=html&fmt=ahah

References

  1. Becher P., Orlich M., Thiel H. J. 1998; Complete genomic sequence of border disease virus, a pestivirus from sheep. J Virol 72:5165–5173
    [Google Scholar]
  2. Blight K. J., Rice C. M. 1997; Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA. J Virol 71:7345–7352
    [Google Scholar]
  3. Brinton M. A., Dispoto J. H. 1988; Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162:290–299
    [Google Scholar]
  4. Brown E. A., Zhang H., Ping L. H., Lemon S. M. 1992; Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res 20:5041–5045
    [Google Scholar]
  5. Collier A. J., Gallego J., Klinck R., Cole P. T., Harris S. J., Harrison G. P., Aboul-Ela F., Varani G., Walker S. 2002; A conserved RNA structure within the HCV IRES eIF3-binding site. Nat Struct Biol 9:375–380
    [Google Scholar]
  6. Cuceanu N. M., Tuplin A., Simmonds P. 2001; Evolutionarily conserved RNA secondary structures in coding and non-coding sequences at the 3′ end of the hepatitis G virus/GB-virus C genome. J Gen Virol 82:713–722
    [Google Scholar]
  7. Deng R., Brock K. V. 1993; 5′ and 3′ untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res 21:1949–1957
    [Google Scholar]
  8. Fletcher S. P., Jackson R. J. 2002; Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5′ untranslated region important for IRES function. J Virol 76:5024–5033
    [Google Scholar]
  9. Fontana W., Konings D. A. M., Stadler P. F., Schuster P. 1993; Statistics of RNA secondary structures. Biopolymers 33:1389–1404
    [Google Scholar]
  10. Friebe P., Lohmann V., Krieger N., Bartenschlager R. 2001; Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J Virol 75:12047–12057
    [Google Scholar]
  11. Gorodkin J., Heyer L. J., Stormo G. D. 1997; Finding common sequences and structure motifs in a set of RNA molecules. In Proceedings of the ISMB-97 pp  120–123 Edited by Gaasterland T., Karp P., Karplus K., Ouzounis C., Sander C., Valencia A. Menlo Park, CA: AAAI Press;
    [Google Scholar]
  12. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41
    [Google Scholar]
  13. Hofacker I. L., Stadler P. F. 1999; Automatic detection of conserved base pairing patterns in RNA virus genomes. Comput Chem 23:401–414
    [Google Scholar]
  14. Hofacker I. L., Fontana W., Stadler P. F., Bonhoeffer S., Tacker M., Schuster P. 1994; Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188
    [Google Scholar]
  15. Hofacker I. L., Fekete M., Flamm C., Huynen M. A., Rauscher S., Stolorz P. E., Stadler P. F. 1998; Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res 26:3825–3836
    [Google Scholar]
  16. Hofacker I. L., Fekete M., Stadler P. F. 2002; Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066
    [Google Scholar]
  17. Hogeweg P., Hesper B. 1984; Energy directed folding of RNA sequences. Nucleic Acids Res 12:67–74
    [Google Scholar]
  18. Honda M., Brown E. A., Lemon S. M. 1996a; Stability of a stem–loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968
    [Google Scholar]
  19. Honda M., Ping L. H., Rijnbrand R. C., Amphlett E., Clarke B., Rowlands D., Lemon S. M. 1996b; Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222:31–42
    [Google Scholar]
  20. Ito T., Lai M. M. C. 1997; Determination of the secondary structure of and cellular protein binding to the 3′-untranslated region of the hepatitis C virus RNA genome. J Virol 71:8698–8706
    [Google Scholar]
  21. Kalliampakou K. I., Psaridi-Linardaki L., Mavromara P. 2002; Mutational analysis of the apical region of domain II of the HCV IRES. FEBS Lett 511:79–84
    [Google Scholar]
  22. Katayama K., Kageyama T., Fukushi S., Hoshino F. B., Kurihara C., Ishiyama N., Okamura H., Oya A. 1998; Full-length GBV-C/HGV genomes from nine Japanese isolates: characterization by comparative analysis. Arch Virol 143:1–13
    [Google Scholar]
  23. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728
    [Google Scholar]
  24. Kieft J. S., Zhou K., Jubin R., Doudna J. A. 2001; Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7:194–206
    [Google Scholar]
  25. Kieft J. S., Zhou K., Grech A., Jubin R., Doudna A. 2002; Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol 9:370–374
    [Google Scholar]
  26. Kim Y. K., Kim C. S., Lee S. H., Jang S. K. 2002; Domains I and II in the 5′ nontranslated region of the HCV genome are required for RNA replication. Biochem Biophys Res Commun 290:105–112
    [Google Scholar]
  27. Kolupaeva V. G., Pestova T. V., Hellen C. U. 2000a; An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74:6242–6250
    [Google Scholar]
  28. Kolupaeva V. G., Pestova T. V., Hellen C. U. 2000b; Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 6:1791–1807
    [Google Scholar]
  29. Kolykhalov A. A., Feinstone S., Rice C. M. 1996; Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J Virol 70:3363–3371
    [Google Scholar]
  30. Leitmeyer K. C., Vaughn D. W., Watts D. M., Salas R., Villalobos I., de Chacon I. V., Ramos C., Rico-Hesse R. 1999; Dengue virus structural differences that correlate with pathogenesis. J Virol 73:4738–4747
    [Google Scholar]
  31. Lück R., Steger G., Riesner D. 1996; Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV, and the mRNA of prion protein. J Mol Biol 258:813–826
    [Google Scholar]
  32. Lück R., Gräf S., Steger G. 1999; ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 27:4208–4217
    [Google Scholar]
  33. Lukavsky P. J., Kim I., Otto G. A., Puglisi J. D. 2003; Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038
    [Google Scholar]
  34. Mandl C. W., Holzmann H., Kunz C., Heinz F. X. 1993; Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194:173–184
    [Google Scholar]
  35. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X. 1998; Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol 72:2132–2140
    [Google Scholar]
  36. Mathews D. H., Sabina J., Zuker M., Turner H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940
    [Google Scholar]
  37. McCaskill J. S. 1990; The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119
    [Google Scholar]
  38. Men R., Bray M., Clark D., Chanock R. M., Lai C. J. 1996; Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70:3930–3937
    [Google Scholar]
  39. Meyers G., Thiel H. J. 1996; Molecular characterization of pestiviruses. Adv Virus Res 47:53–118
    [Google Scholar]
  40. Moser C., Bosshart A., Tratschin J. D., Hofmann M. A. 2001; A recombinant classical swine fever virus with a marker insertion in the internal ribosome entry site. Virus Genes 23:63–68
    [Google Scholar]
  41. Myers T. M., Kolupaeva V. G., Mendez E., Baginski S. G., Frolov I., Hellen C. U., Rice C. M. 2001; Efficient translation initiation is required for replication of bovine viral diarrhea virus subgenomic replicons. J Virol 75:4226–4238
    [Google Scholar]
  42. Odreman-Macchioli F. E., Tisminetzky S. G., Zotti M., Baralle F. E., Buratti E. 2000; Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Res 28:875–885
    [Google Scholar]
  43. Oh J. W., Ito T., Lai M. M. 1999; A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 73:7694–7702
    [Google Scholar]
  44. Oh J. W., Sheu G. T., Lai M. M. 2000; Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template. J Biol Chem 275:17710–17717
    [Google Scholar]
  45. Okamoto H., Nakao H., Inoue T., Fukuda M., Kishimoto J., Iizuka H., Tsuda F., Miyakawa Y., Mayumi M. 1997; The entire nucleotide sequences of two GB virus C/hepatitis G virus isolates of distinct genotypes from Japan. J Gen Virol 78:737–745
    [Google Scholar]
  46. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. 1998; A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83
    [Google Scholar]
  47. Proutski V., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202
    [Google Scholar]
  48. Proutski V., Gritsun T. S., Gould E. A., Holmes E. C. 1999; Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64:107–123
    [Google Scholar]
  49. Psaridi L., Georgopoulou U., Varaklioti A., Mavromara P. 1999; Mutational analysis of a conserved tetraloop in the 5′ untranslated region of hepatitis C virus identifies a novel RNA element essential for the internal ribosome entry site function. FEBS Lett 453:49–53
    [Google Scholar]
  50. Rauscher S., Flamm C., Mandl C. W., Heinz F. X., Stadler P. F. 1997; Secondary structure of the 3′-noncoding region of flavivrus genomes: comparative analysis of base pairing probabilities. RNA 3:779–791
    [Google Scholar]
  51. Ray S. C., Wang Y. M., Laeyendecker O., Ticehurst J. R., Villano S. A., Thomas D. L. 1999; Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy. J Virol 73:2938–2946
    [Google Scholar]
  52. Rivas E., Eddy S. R. 2000; Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16:583–605
    [Google Scholar]
  53. Sankoff D. 1985; Simultaneous solution of the RNA folding, alignment, and proto-sequence problems. SIAM J Appl Math 45:810–825
    [Google Scholar]
  54. Schuster P., Fontana W., Stadler P. F., Hofacker I. L. 1994; From sequences to shapes and back: a case study in RNA secondary structures. Proc R Soc Lond B Biol Sci 255:279–284
    [Google Scholar]
  55. Simmonds P., Smith D. B. 1999; Structural constraints on RNA virus evolution. J Virol 73:5787–5794
    [Google Scholar]
  56. Simons J. N., Desai S. M., Schultz D. E., Lemon S. M., Mushahwar I. K. 1996; Translation initiation in GB viruses A and C: evidence for internal ribosome entry and implication for genome organization. J Virol 70:6126–6135
    [Google Scholar]
  57. Smith D. B., Cuceanu N., Davidson F., Jarvis L. M., Mokili J. L., Hamid S., Ludlam C. A., Simmonds P. 1997; Discrimination of hepatitis G virus/GBV-C geographical variants by analysis of the 5′ non-coding region. J Gen Virol 78:1533–1542
    [Google Scholar]
  58. Spahn C. M., Kieft J. S., Grassucci R. A., Penczek P. A., Zhou K., Doudna J. A., Frank J. 2001; Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291:1959–1962
    [Google Scholar]
  59. Stocsits R., Hofacker I. L., Stadler P. F. 1999; Conserved secondary structures in hepatitis B virus RNA. In Computer Science in Biology pp  73–79 Univ; Bielefeld, Bielefeld, Germany: Proceedings of the GCB'99 Hannover, Germany:
    [Google Scholar]
  60. Tanaka T., Kato N., Cho M. J., Sugiyama K., Shimotohno K. 1996; Structure of the 3′ terminus of the hepatitis c virus genome. J Virol 70:3307–3312
    [Google Scholar]
  61. Tang S., Collier A. J., Elliott R. M. 1999; Alterations to both the primary and predicted secondary structure of stem-loop IIIc of the hepatitis C virus 1b 5′ untranslated region (5′UTR) lead to mutants severely defective in translation which cannot be complemented in trans by the wild-type 5′UTR sequence. J Virol 73:2359–2364
    [Google Scholar]
  62. Tautz N., Harada T., Kaiser A., Rinck G., Behrens S., Thiel H. J. 1999; Establishment and characterization of cytopathogenic and noncytopathogenic pestivirus replicons. J Virol 73:9422–9432
    [Google Scholar]
  63. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  64. Tuplin A., Wood J., Evans D. J., Patel A. H., Simmonds P. 2002; Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus. RNA 8:824–841
    [Google Scholar]
  65. van Regenmortel M. H. V., Fauquet C., Bishop D. 8 other authors 2000; Virus Taxonomy: The Classification and Nomenclature of Viruses . The Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
  66. Witwer C., Rauscher S., Hofacker I. L., Stadler P. F. 2001; Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Res 29:5079–5089
    [Google Scholar]
  67. Xiang J., Wunschmann S., Schmidt W., Shao J., Stapleton J. T. 2000; Full-length GB virus C (Hepatitis G virus) RNA transcripts are infectious in primary CD4-positive T cells. J Virol 74:9125–9133
    [Google Scholar]
  68. Yamada N., Tanihara K., Takada A., Yorihuzi T. T., Tsutsumi M., Shimomura H., Tsuji T., Date T. 1996; Genetic organization and diversity of the 3′ noncoding region of the hepatitis C virus genome. Virology 223:255–261
    [Google Scholar]
  69. Yi M. K., Lemon S. M. 2003; 3′ nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 77:3557–3568
    [Google Scholar]
  70. You S., Padmanabhan R. 1999; A novel in vitro replication system for dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722
    [Google Scholar]
  71. Yu H., Grassmann C. W., Behrens S. E. 1999; Sequence and structural elements at the 3′ terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. J Virol 73:3638–3648
    [Google Scholar]
  72. Zhao W. D., Wimmer E. 2001; Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol 75:3719–3730
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19462-0
Loading
/content/journal/jgv/10.1099/vir.0.19462-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error