1887

Abstract

This review provides an update of the genetic content, phylogeny and evolution of the family . An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19497-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir842895.html?itemId=/content/journal/jgv/10.1099/vir.0.19497-0&mimeType=html&fmt=ahah

References

  1. Akusjärvi G., Pettersson U., Roberts R. J. 1986; Structure and function of the adenovirus-2 genome. In Developments in Molecular Virology: Adenovirus DNA pp  53–95 Edited by Doerfler W. Boston: Martinus Nijhoff;
    [Google Scholar]
  2. Anderson C. W. 1990; The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177:259–272
    [Google Scholar]
  3. Bailey A., Mautner V. 1994; Phylogenetic relationships among adenovirus serotypes. Virology 205:438–452
    [Google Scholar]
  4. Baker C. C., Ziff E. B. 1981; Promoters and heterogeneous 5′ termini of the messenger RNAs of adenovirus serotype 2. J Mol Biol 149:189–221
    [Google Scholar]
  5. Bamford D. H. 2002 Tectivirus . In The Springer Index of Viruses , pp. 1132–1135 Edited by Tidona C. A., Darai G. Berlin: Springer-Verlag;
    [Google Scholar]
  6. Bamford D. H., Ackermann H.-W. 2000; Family Tectiviridae . In Virus Taxonomy: Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses pp  111–116 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  7. Bamford J. K. H., Hänninen A.-L., Pakula T. M., Ojala P. M., Kalkkinen N., Frilander M., Bamford D. H. 1991; Genome organization of membrane-containing bacteriophage PRD1. Virology 183:658–676
    [Google Scholar]
  8. Belnap D. M., Steven A. C. 2000; Déjà vu all over again’: the similar structures of bacteriophage PRD1 and adenovirus. Trends Microbiol 8:91–93
    [Google Scholar]
  9. Benkő M., Harrach B. 1998; A proposal for a new (third) genus within the family Adenoviridae . Arch Virol 143:829–837
    [Google Scholar]
  10. Benkő M., Harrach B. 2003; Molecular evolution of adenoviruses. Curr Top Microbiol Immunol 272:3–35
    [Google Scholar]
  11. Benkő M., Harrach B., Russell W. C. 2000; Family Adenoviridae . . In Virus Taxonomy . Seventh Report of the International Committee on Taxonomy of Viruses pp  227–238 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  12. Benkő M., Élő P., Ursu K., Ahne W., LaPatra S. E., Thomson D., Harrach B. 2002; First molecular evidence for the existence of distinct fish and snake adenoviruses. J Virol 76:10056–10059
    [Google Scholar]
  13. Benson S. D., Bamford J. K. H., Bamford D. H., Burnett R. M. 1999; Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833
    [Google Scholar]
  14. Benson S. D., Bamford J. K. H., Bamford D. H., Burnett R. M. 2002; The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD1, at 1·65 Å resolution. Acta Crystallogr D Biol Crystallogr 58:39–59
    [Google Scholar]
  15. Berencsi G., Bánrévi A., Takács M., Lengyel A., Nász I. 1995; Evolutionary aspects, and taxonomic definition of viruses together with mobile extrachromosomal elements of relative autonomy into a special highest rank taxon (a review). Acta Microbiol Immunol Hung 42:141–153
    [Google Scholar]
  16. Berget S. M., Moore C., Sharp P. A. 1977; Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 74:3171–3175
    [Google Scholar]
  17. Borodovsky M., McIninch J. 1993; genmark: parallel gene recognition for both DNA strands. Comput Chem 17:123–133
    [Google Scholar]
  18. Both G. W. 2002a; Atadenovirus . . In The Springer Index of Viruses pp  2–8 Edited by Tidona C. A., Darai G. Berlin: Springer-Verlag;
    [Google Scholar]
  19. Both G. W. 2002b; Identification of a unique family of F-box proteins in atadenoviruses. Virology 304:425–433
    [Google Scholar]
  20. Chelvanayagam G., Heringa J., Argos P. 1992; Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J Mol Biol 228:220–242
    [Google Scholar]
  21. Chen C. W. 1996; Complications and implications of linear bacterial chromosomes. Trends Genet 12:192–196
    [Google Scholar]
  22. Chillon M., Bosch A., Zabner J., Law L., Armentano D., Welsh M. J., Davidson B. L. 1999; Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 73:2537–2540
    [Google Scholar]
  23. Chiocca S., Kurzbauer R., Schaffner G., Baker A., Mautner V., Cotten M. 1996; The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol 70:2939–2949
    [Google Scholar]
  24. Chow L. T., Gelinas R. E., Broker T. R., Roberts R. J. 1977; An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8
    [Google Scholar]
  25. Chow L. T., Broker T. R., Lewis J. B. 1979; Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134:265–303
    [Google Scholar]
  26. Chroboczek J., Bieber F., Jacrot B. 1992; The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186:280–285
    [Google Scholar]
  27. Davison A. J., Harrach B. 2002; Siadenovirus .. In The Springer Index of Viruses pp  29–33 Edited by Tidona C. A., Darai G. New York: Springer-Verlag;
    [Google Scholar]
  28. Davison A. J., Telford E. A. R., Watson M. S., McBride K., Mautner V. 1993; The DNA sequence of adenovirus type 40. J Mol Biol 234:1308–1316
    [Google Scholar]
  29. Davison A. J., Wright K. M., Harrach B. 2000; DNA sequence of frog adenovirus. J Gen Virol 81:2431–2439
    [Google Scholar]
  30. Davison A. J., Akter P., Cunningham C. 7 other authors 2003; Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J Gen Virol 84:657–663
    [Google Scholar]
  31. de Jong R. N., van der Vliet P. C., Brenkman A. B. 2003; Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr Top Microbiol Immunol 272:187–211
    [Google Scholar]
  32. Dix I., Leppard K. N. 1992; Open reading frames 1 and 2 of adenovirus region E4 are conserved between human serotypes 2 and 5. J Gen Virol 73:2975–2976
    [Google Scholar]
  33. Élő P., Farkas S. L., Dán Á. L., Kovács G. M. 2003; The p32K structural protein of the atadenovirus might have bacterial relatives. J Mol Evol 56:175–180
    [Google Scholar]
  34. Farina S. F., Gao G.-P., Xiang Z. Q., Rux J. J., Burnett R. M., Alvira M. R., Marsh J., Ertl H. C. J., Wilson J. M. 2001; Replication-defective vector based on a chimpanzee adenovirus. J Virol 75:11603–11613
    [Google Scholar]
  35. Farkas S. L., Benkő M., Élő P., Ursu K., Dán Á., Ahne W., Harrach B. 2002; Genomic and phylogenetic analyses of an adenovirus isolated from a corn snake ( Elaphe guttata ) imply a common origin with members of the proposed new genus Atadenovirus . J Gen Virol 83:2403–2410
    [Google Scholar]
  36. Harrach B. 2000; Reptile adenoviruses in cattle?. Acta Vet Hung 48:485–490
    [Google Scholar]
  37. Harrach B., Benkő M. 1998; Phylogenetic analysis of adenovirus sequences. Proof of the necessity of establishing a third genus in the Adenoviridae family. Methods Mol Med 21:309–339
    [Google Scholar]
  38. Hess M., Blöcker H., Brandt P. 1997; The complete nucleotide sequence of the egg drop syndrome virus: an intermediate between mastadenoviruses and aviadenoviruses. Virology 238:145–156
    [Google Scholar]
  39. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y.-N., Hayward G. S. 1989; Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol 70:837–855
    [Google Scholar]
  40. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E. S. 2003; Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254
    [Google Scholar]
  41. Khatri A., Both G. W. 1998; Identification of transcripts and promoter regions of ovine adenovirus OAV287. Virology 245:128–141
    [Google Scholar]
  42. Kidd A. H., Garwicz D., Öberg M. 1995; Human and simian adenoviruses: phylogenetic inferences from analysis of VA RNA genes. Virology 207:32–45
    [Google Scholar]
  43. Kovács G. M., LaPatra S. E., D'Halluin J.-C., Benkő M. 2003; Phylogenetic analysis of the hexon and protease genes of a fish adenovirus isolated from white sturgeon ( Acipenser transmontanus ) supports the proposal for a new adenovirus genus. Virus Res (in Press)
    [Google Scholar]
  44. Larsson S., Bellett A., Akusjärvi G. 1986; VA RNAs from avian and human adenoviruses: dramatic differences in length, sequence, and gene location. J Virol 58:600–609
    [Google Scholar]
  45. Liu H., Naismith J. H., Hay R. T. 2003; Adenovirus DNA replication. Curr Top Microbiol Immunol 272:131–164
    [Google Scholar]
  46. Ma Y., Mathews M. B. 1996; Structure, function, and evolution of adenovirus-associated RNA: a phylogenetic approach. J Virol 70:5083–5099
    [Google Scholar]
  47. Mathews M. B., Shenk T. 1991; Adenovirus-associated RNA and translation control. J Virol 65:5657–5662
    [Google Scholar]
  48. McGeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18:4105–4110
    [Google Scholar]
  49. McGeoch D. J., Davison A. J. 1999; The molecular evolutionary history of the herpesviruses. In Origin and Evolution of Viruses pp  441–465 Edited by Domingo E., Webster R., Holland J. London: Academic Press;
    [Google Scholar]
  50. Mei Y.-F., Skog J., Lindman K., Wadell G. 2003; Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, a member of species C. J Gen Virol 84:2061–2071
    [Google Scholar]
  51. Meissner J. D., Hirsch G. N., LaRue E. A., Fulcher R. A., Spindler K. R. 1997; Completion of the DNA sequence of mouse adenovirus type 1: sequence of E2B, L1, and L2 (18–51 map units). Virus Res 51:53–64
    [Google Scholar]
  52. Mori K., Juttermann R., Wienhues U., Kobayashi K., Yagi M., Sugimoto T., Tjia S. T., Doerfler W., Hosokawa K. 1996; Anti-interferon activity of adenovirus-2-encoded VAI and VAII RNAs in translation in cultured human cells. Virus Res 42:53–63
    [Google Scholar]
  53. Morrison M. D., Onions D. E., Nicolson L. 1997; Complete DNA sequence of canine adenovirus type 1. J Gen Virol 78:873–878
    [Google Scholar]
  54. Nagy M., Nagy E., Tuboly T. 2001; The complete nucleotide sequence of porcine adenovirus serotype 5. J Gen Virol 82:525–529
    [Google Scholar]
  55. Ojkic D., Nagy E. 2000; The complete nucleotide sequence of fowl adenovirus type 8. J Gen Virol 81:1833–1837
    [Google Scholar]
  56. Ojkic D., Krell P. J., Nagy E. 2002; Unique features of fowl adenovirus 9 gene transcription. Virology 302:274–285
    [Google Scholar]
  57. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  58. Paillard M., Sederoff R. R., Levings C. S. III 1985; Nucleotide sequence of the S-1 mitochondrial DNA from the cytoplasm of maize. EMBO J 4:1125–1128
    [Google Scholar]
  59. Payet V., Arnauld C., Picault J.-P., Jestin A., Langlois P. 1998; Transcriptional organization of the avian adenovirus CELO. J Virol 72:9278–9285
    [Google Scholar]
  60. Pečenková T., Pačes V. 1999; Molecular phylogeny of ϕ 29-like phages and their evolutionary relatedness to other protein-primed replicating phages and other phages hosted by gram-positive bacteria. J Mol Evol 48:197–208
    [Google Scholar]
  61. Pitcovski J., Mualem M., Rei-Koren Z. 7 other authors 1998; The complete DNA sequence and genome organization of the avian adenovirus, hemorrhagic enteritis virus. Virology 249:307–315
    [Google Scholar]
  62. Ravantti J. J., Gaidelyte A., Bamford D. H., Bamford J. K. H. 2003; Comparative analysis of bacterial viruses Bam35, infecting a gram-positive host, and PRD1, infecting gram-negative hosts, demonstrates a viral lineage. Virology (in Press)
    [Google Scholar]
  63. Reddy P. S., Idamakanti N., Song J.-Y. & 7 other authors (1998a). Nucleotide sequence and transcription map of porcine adenovirus type 3. Virology 251:414–426
    [Google Scholar]
  64. Reddy P. S., Idamakanti N., Zakhartchouk A. N., Baxi M. K., Lee J. B., Pyne C., Babiuk L. A., Tikoo S. K. 1998b; Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J Virol 72:1394–1402
    [Google Scholar]
  65. Roberts R. J., Akusjärvi G., Aleström P., Gelinas R. E., Gingeras T. R., Sciaky D., Pettersson U. 1986; A consensus sequence for the adenovirus-2 genome. In Developments in Molecular Virology: Adenovirus DNA pp  1–51 Edited by Doerfler W. Boston: Martinus Nijhoff;
    [Google Scholar]
  66. Rohe M., Schrage K., Meinhardt F. 1991; The linear plasmid pMC3-2 from Morchella conica is structurally related to adenoviruses. Curr Genet 20:527–533
    [Google Scholar]
  67. Russell W. C. 2000; Update on adenovirus and its vectors. J Gen Virol 81:2573–2604
    [Google Scholar]
  68. Russell W. C., Benkő M. 1999; Animal adenoviruses. In Encyclopedia of Virology pp  14–21 Edited by Granoff A., Webster R. G. New York: Academic Press;
    [Google Scholar]
  69. Ruzindana-Umunyana A., Imbeault L., Weber J. M. 2002; Substrate specificity of adenovirus protease. Virus Res 89:41–52
    [Google Scholar]
  70. Salas M. 1991; Protein-priming of DNA replication. Annu Rev Biochem 60:39–71
    [Google Scholar]
  71. San Martin C., Burnett R. M. 2003; Structural studies on adenoviruses. Curr Top Microbiol Immunol 272:57–94
    [Google Scholar]
  72. Schöndorf E., Bahr U., Handermann M., Darai G. 2003; Characterization of the complete genome of the Tupaia (tree shrew) adenovirus. J Virol 77:4345–4356
    [Google Scholar]
  73. Shenk T. 2001; Adenoviridae : the viruses and their replication. In Fields Virology , 4th edn. vol 2 pp  2265–2300 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  74. Sheppard M., Werner W., McCoy R. J., Johnson M. A. 1998; The major late promoter and bipartite leader sequence of fowl adenovirus. Arch Virol 143:537–548
    [Google Scholar]
  75. Sprengel J., Schmitz B., Heuss-Neitzel D., Zock C., Doerfler W. 1994; Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol 68:379–389
    [Google Scholar]
  76. Stone D., Furthmann A., Sandig V., Lieber A. 2003; The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11. Virology 309:152–165
    [Google Scholar]
  77. Tigges M. A., Raskas H. J. 1984; Splice junctions in adenovirus 2 early region 4 mRNAs: multiple splice sites produce 18 to 24 RNAs. J Virol 50:106–117
    [Google Scholar]
  78. Upton C., Slack S., Hunter A. L., Ehlers A., Roper R. L. 2003; Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600
    [Google Scholar]
  79. Venktesh A., Watt F., Xu Z. Z., Both G. W. 1998; Ovine adenovirus (OAV287) lacks a virus-associated RNA gene. J Gen Virol 79:509–516
    [Google Scholar]
  80. Virtanen A., Gilardi P., Näslund A., LeMoullec J. M., Pettersson U., Perricaudet M. 1984; mRNAs from human adenovirus 2 early region 4. J Virol 51:822–831
    [Google Scholar]
  81. Vrati S., Brookes D. E., Strike P., Khatri A., Boyle D. B., Both G. W. 1996; Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. Virology 220:186–199
    [Google Scholar]
  82. Wadell G. 1984; Molecular epidemiology of human adenoviruses. Curr Top Microbiol Immunol 110:191–220
    [Google Scholar]
  83. Weber J. M. 1995; Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol Immunol 199:227–235
    [Google Scholar]
  84. Webster A., Russell S., Talbot P., Russell W. C., Kemp G. D. 1989; Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol 70:3225–3234
    [Google Scholar]
  85. Weiss R. S., Lee S. S., Prasad B. V. V., Javier R. T. 1997; Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes. J Virol 71:1857–1870
    [Google Scholar]
  86. Wold W. S. M., Gooding L. R. 1991; Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus–cell interactions. Virology 184:1–8
    [Google Scholar]
  87. Zhang W., Imperiale M. J. 2003; Requirement of the adenovirus IVa2 protein for virus assembly. J Virol 77:3586–3594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19497-0
Loading
/content/journal/jgv/10.1099/vir.0.19497-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error