1887

Abstract

The evolutionary relationships of 26 sequenced members of the poxvirus family have been investigated by comparing their genome organization and gene content and by using DNA and protein sequences for phylogenetic analyses. The central region of the genome of chordopoxviruses (ChPVs) is highly conserved in gene content and arrangement, except for some gene inversions in (FPV) and species-specific gene insertions in FPV and (MCV). In the central region 90 genes are conserved in all ChPVs, but no gene from near the termini is conserved throughout the subfamily. Inclusion of two entomopoxvirus (EnPV) sequences reduces the number of conserved genes to 49. The EnPVs are divergent from ChPVs and between themselves. Relationships between ChPV genera were evaluated by comparing the genome size, number of unique genes, gene arrangement and phylogenetic analyses of protein sequences. Overall, genus is the most divergent. The next most divergent ChPV genus is , whose sole member, MCV, infects only man. The , , and genera cluster together, with and sharing a common ancestor, and are distinct from the genus (OPV). Within the OPV genus, , and strain Brighton Red (BR) do not group closely with any other OPV, and form a subgroup, and is most closely related to CPV-GRI-90. This suggests that CPV-BR and GRI-90 should be separate species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19565-0
2004-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/1/vir850105.html?itemId=/content/journal/jgv/10.1099/vir.0.19565-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Oma E., Kutish G. F., Rock D. L. 1999; The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73:533–552
    [Google Scholar]
  2. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Kutish G. F., Rock D. L. 2000; The genome of fowlpox virus. J Virol 74:3815–3831
    [Google Scholar]
  3. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Osorio F. A., Balinsky C., Kutish G. F., Rock D. L. 2002a; The genome of swinepox virus. J Virol 76:783–790
    [Google Scholar]
  4. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Sandybaev N. T., Kerembekova U. Z., Zaitsev V. L., Kutish G. F., Rock D. L. 2002b; The genome of camelpox virus. Virology 295:1–9
    [Google Scholar]
  5. Aguado B., Selmes I. P., Smith G. L. 1992; Nucleotide sequence of 21·8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 73:2887–2902
    [Google Scholar]
  6. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396
    [Google Scholar]
  7. Banham A. H., Smith G. L. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology 191:803–812
    [Google Scholar]
  8. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976
    [Google Scholar]
  9. Bawden A. L., Glassberg K. J., Diggans J., Shaw R., Farmerie W., Moyer R. W. 2000; Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274:120–139
    [Google Scholar]
  10. Baxby D. 1981 Jenner's Smallpox Vaccine London: Heinemann;
    [Google Scholar]
  11. Cameron C., Hota-Mitchell S., Chen L., Barrett J., Cao J. X., Macaulay C., Willer D., Evans D., McFadden G. 1999; The complete DNA sequence of myxoma virus. Virology 264:298–318
    [Google Scholar]
  12. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890
    [Google Scholar]
  13. Downie A. W. 1939a; Immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br J Exp Pathol 20:158–176
    [Google Scholar]
  14. Downie A. W. 1939b; A study of the lesions produced experimentally by cowpox virus. J Pathol Bacteriol 48:361–379
    [Google Scholar]
  15. Engelstad M., Howard S. T., Smith G. L. 1992; A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801–810
    [Google Scholar]
  16. Felsenstein J. 1973; Maximum-likelihood estimation of evolutionary trees from continuous characters. Am J Hum Genet 25:471–492
    [Google Scholar]
  17. Felsenstein J. 1984; Distance methods for inferring phylogenies: a justification. Evolution 38:16–24
    [Google Scholar]
  18. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  19. Felsenstein J. 1989; phylip – Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166
    [Google Scholar]
  20. Fenner F., Anderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and its Eradication Geneva: World Health Organization;
    [Google Scholar]
  21. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  22. Gubser C., Smith G. L. 2002; The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83:855–872
    [Google Scholar]
  23. Huelsenbeck J. P., Bull J. J. 1996; A likelihood ratio test to detect conflicting phylogenetic signal. Syst Biol 45:92–98
    [Google Scholar]
  24. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  25. Law K. M., Smith G. L. 1992; A vaccinia serine protease inhibitor which prevents virus induced cell fusion. J Gen Virol 73:549–557
    [Google Scholar]
  26. Lee H.-J., Essani K., Smith G. L. 2001; The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281:170–192
    [Google Scholar]
  27. Massung R. F., Liu L. I., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201:215–240
    [Google Scholar]
  28. McGeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18:4105–4110
    [Google Scholar]
  29. McGeoch D. J., Dolan A., Ralph A. C. 2000; Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406
    [Google Scholar]
  30. Mercer A. A., Fraser K., Barns G., Robinson A. J. 1987; The structure and cloning of orf virus DNA. Virology 157:1–12
    [Google Scholar]
  31. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038
    [Google Scholar]
  32. Morgenstern B. 1999; dialign 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218
    [Google Scholar]
  33. Moss B. 2001; Poxviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  2849–2883 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  34. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Limbach K., Norton E. K., Paoletti E. 1990; Vaccinia virus host range genes. Virology 179:276–286
    [Google Scholar]
  35. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. 1991; Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180:406–410
    [Google Scholar]
  36. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818
    [Google Scholar]
  37. Ray S. C. 1997; SimPlot for Windows 95/NT, version 1.2.2. http://wwwwelchjhuedu/~sray/download
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  39. Senkevich T. G., Bugert J. J., Sisler J. R., Koonin E. V., Darai G., Moss B. 1996; Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 273:813–816
    [Google Scholar]
  40. Shchelkunov S. N., Massung R. F., Esposito J. J. 1995; Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Res 36:107–118
    [Google Scholar]
  41. Shchelkunov S. N., Safronov P. F., Totmenin A. V., Petrov N. A., Ryazankina O. I., Gutorov V. V., Kotwal G. J. 1998; The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243:432–460
    [Google Scholar]
  42. Shchelkunov S. N., Totmenin A. V., Loparev V. N. 7 other authors 2000; Alastrim smallpox variola minor virus genome DNA sequences. Virology 266:361–386
    [Google Scholar]
  43. Shchelkunov S. N., Totmenin A. V., Babkin I. V. 11 other authors 2001; Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509:66–70
    [Google Scholar]
  44. Shida H. 1986; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451–462
    [Google Scholar]
  45. Slabaugh M., Roseman N., Davis R., Mathews C. 1988; Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J Virol 62:519–527
    [Google Scholar]
  46. Smith G. L., Moss B. 1983; Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25:21–28
    [Google Scholar]
  47. Smith G. L., Chan Y. S., Howard S. T. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol 72:1349–1376
    [Google Scholar]
  48. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969
    [Google Scholar]
  49. Swofford D. L. 2003; paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4: Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  50. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002; A study of the vaccinia virus interferon-γ receptor and its contribution to virus virulence. J Gen Virol 83:1953–1964
    [Google Scholar]
  51. Thompson J. D., Higgins D. G., Gibson T. J. 1994; Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10:19–29
    [Google Scholar]
  52. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Kutish G. F., Rock D. L. 2001; Genome of lumpy skin disease virus. J Virol 75:7122–7130
    [Google Scholar]
  53. Tulman E. R., Afonso C. L., Lu Z. 7 other authors 2002; The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061
    [Google Scholar]
  54. Upton C., Slack S., Hunter A. L., Ehlers A., Roper R. L. 2003; Poxvirus orthologous clusters: towards defining the minimum essential poxvirus genome. J Virol 77:7590–7600
    [Google Scholar]
  55. van Eijl H., Hollinshead M., Rodger G., Zhang W.-H., Smith G. L. 2002; The vaccinia virus F12L is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol 83:195–207
    [Google Scholar]
  56. Willer D. O., McFadden G., Evans D. H. 1999; The complete genome sequence of shope (rabbit) fibroma virus. Virology 264:319–343
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19565-0
Loading
/content/journal/jgv/10.1099/vir.0.19565-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error