1887

Abstract

Permeability alterations of microvascular endothelia may be a factor in the plasma leakage produced by dengue virus infection. Confluent monolayers of the human dermal microvascular endothelial cell line HMEC-1 were utilized as an experimental model to study the cellular responses induced by the virus. Infected monolayers showed increased permeability for [H]mannitol, but no changes were observed for 4–70 kDa dextrans at 48 h post-infection (p.i.), a time at which viral titres reached maximal values and 40 % of the cells expressed viral proteins. A further increase in permeability occurred at 72 h, still without evident cytopathic effects on the monolayer. Coinciding with this, actin was reorganized in the infected cells and the tight junction protein occludin was displaced to the cytoplasm. Increments in the thickness of stress fibres and focal adhesions were observed in uninfected cells neighbouring infected cells. Culture medium from infected monolayers induced permeability changes and thickening of actin-containing structures in control cultures that resembled those observed 48 h p.i. Interleukin (IL) 8 was found in culture medium at concentrations ranging from 20 to 100 pg ml. Neutralizing antibodies against IL8 partially inhibited the changes produced by the culture medium as well as those induced by addition of IL8. Genistein inhibited the effect of the culture medium and the phosphorylation of proteins associated with focal adhesions and indicated the participation of tyrosine kinases. These findings suggest that IL8 production by infected monolayers contributes to the virus-induced effect on the cytoskeleton and tight junctions and thereby modifies transendothelial permeability.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19652-0
2004-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/7/vir851801.html?itemId=/content/journal/jgv/10.1099/vir.0.19652-0&mimeType=html&fmt=ahah

References

  1. Ades E. W., Candal F. J., Swerlick R. A., George V. G., Summers S., Bosse D. C., Lawley T. J. 1992; HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690 [CrossRef]
    [Google Scholar]
  2. Amieva M. R., Vogelmann R., Covacci A., Tompkins L. S., Nelson W. J., Falkow S. 2003; Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–1434 [CrossRef]
    [Google Scholar]
  3. Anderson J. M. 2001; Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 16:126–130
    [Google Scholar]
  4. Anderson R., Wang S., Osiowy C., Issekutz A. C. 1997; Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71:4226–4232
    [Google Scholar]
  5. Andrews B. S., Theophilopoulos A. N., Peters C. J., Loskutoff D. J., Brandt W. E., Dixon F. J. 1978; Replication of dengue and junin viruses in culture rabbit and human endothelial cells. Infect Immun 20:776–781
    [Google Scholar]
  6. Avirutnan P., Malasit P., Seliger B., Bhakdi S., Husmann M. 1998; Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161:6338–6346
    [Google Scholar]
  7. Blum M. S., Toninelli E., Anderson J. M., Balda M. S., Zhou J., O'Donnell L., Pardi R., Bender J. R. 1997; Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 273:H286–294
    [Google Scholar]
  8. Bonner S. M., O'Sullivan M. A. 1998; Endothelial cell monolayers as a model system to investigate dengue shock syndrome. J Virol Methods 71:159–167 [CrossRef]
    [Google Scholar]
  9. Bosch I., Xhaja K., Estevez L., Raines G., Melichar H., Warke R. V., Fournier M. V., Ennis F. A., Rothman A. L. 2002; Increase production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol 76:5588–5597 [CrossRef]
    [Google Scholar]
  10. Carr J. M., Hocking H., Bunting K. P., Wright J., Davidson A., Gamble J., Burrell C. J., Li P. 2003; Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol 69:521–528 [CrossRef]
    [Google Scholar]
  11. Cereijido M., Gonzalez-Mariscal L., Contreras G. 1989; Tight junction: barrier between higher organisms and environment. News Physiol Sci 4:72–75
    [Google Scholar]
  12. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome and organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  13. Chaturvedi U. C., Elbishbishi E. A., Agarwal R., Raghupathy R., Nagar R., Tandon R., Pacsa A. S., Younis O. I., Azizieh F. 1999; Sequential production of cytokines by dengue virus-infected human peripheral blood leukocyte cultures. J Med Virol 59:335–340 [CrossRef]
    [Google Scholar]
  14. Chen Y., Maguire T., Marks R. M. 1996; Demonstration of binding of dengue virus envelope protein to target cells. J Virol 70:8765–8772
    [Google Scholar]
  15. Chen B. H., Tzen J. T., Bresnick A. R., Chen H. C. 2002; Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J Biol Chem 277:33857–33863 [CrossRef]
    [Google Scholar]
  16. Collares-Buzato C. B., Jepson M. A., Simmons N. L., Hirst B. H. 1998; Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur J Cell Biol 76:85–92 [CrossRef]
    [Google Scholar]
  17. Cudmore S., Reckmann I., Way M. 1997; Viral manipulations of the actin cytoskeleton. Trends Microbiol 5:142–148 [CrossRef]
    [Google Scholar]
  18. Dejana E., Lampugnani M. J., Martinez-Estrada O., Bazzoni G. 2000; The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol 44:743–748
    [Google Scholar]
  19. Del Vecchio P. J., Siflinger-Birnboim A., Belloni P. N., Holleran L. A., Lum H., Malik A. B. 1992; Culture and characterization of pulmonary microvascular endothelial cells. In Vitro Cell Dev Biol 28A711–715
    [Google Scholar]
  20. Evans T. J. 2000; Bioassay for tumor necrosis factor-alpha and -beta. Mol Biotechnol 15:243–248 [CrossRef]
    [Google Scholar]
  21. Falconar A. K. I., Young P. R. 1991; Production of dimer-specific and dengue virus group cross-reactive mouse monoclonal antibodies to the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol 72:961–965 [CrossRef]
    [Google Scholar]
  22. Feniger-Barish R., Yron I., Meshel T., Matityahu E., Ben-Baruch A. 2003; IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 42:2874–2876 [CrossRef]
    [Google Scholar]
  23. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S. A., Tsukita S. H. 1993; Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788 [CrossRef]
    [Google Scholar]
  24. Huang Y. H., Lei H. Y., Liu H. S., Lin Y. S., Liu C. C., Yeh T. M. 2000; Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg 63:71–75
    [Google Scholar]
  25. Imamura H., Takaishi K., Nakano K., Kodama A., Oishi H., Shiozaki H., Monden M., Sasaki T., Takai Y. 1998; Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol Biol Cell 9:2561–2575 [CrossRef]
    [Google Scholar]
  26. Jacobs M., Levin M. 2002; An improved endothelial barrier model to investigate dengue haemorrhagic fever. J Virol Methods 104:173–185 [CrossRef]
    [Google Scholar]
  27. Jiang W. G., Martin T. A., Matsumoto K., Nakamura T., Mansel R. E. 1999; Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistence (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol 181:319–329 [CrossRef]
    [Google Scholar]
  28. Kielbassa K., Schmitz C., Gerke V. 1998; Disruption of endothelial microfilaments selectively reduces the transendothelial migration of monocytes. Exp Cell Res 243:129–141 [CrossRef]
    [Google Scholar]
  29. Krishnamurti C., Kalayanarooj S., Cutting M. A. 9 other authors 2001; Mechanisms of hemorrhage in dengue without circulatory collapse. Am J Trop Med Hyg 65:840–847
    [Google Scholar]
  30. Lum H., Malik A. B. 1996; Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol 74:787–800
    [Google Scholar]
  31. Madara J. 1991; Relationships between the tight junctions and the cytoskeleton. In Tight Junctions pp  105–119 Edited by Cereijido M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  32. McCarthy K. M., Skare I. B., Stankewich M. C., Furuse M., Tsukita S., Rogers R. A., Lynch R. D., Schneeberger E. E. 1996; Occludin is a functional component of the tight junction. J Cell Sci 109:2287–2298
    [Google Scholar]
  33. Meza I., Ibarra G., Sabanero M., Martínez-Palomo A., Cereijido M. 1980; Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol 87:746–754 [CrossRef]
    [Google Scholar]
  34. Mongkolsapaya J., Dejnirattisai W., Xu X. N. 11 other authors 2003; Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9:921–927 [CrossRef]
    [Google Scholar]
  35. Obert G., Peiffer I., Servin A. L. 2000; Rotavirus-induced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers. J Virol 74:4645–4651 [CrossRef]
    [Google Scholar]
  36. Raghupathy R., Chaturvedi U. C., Al-Sayer H. 10 other authors 1998; Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56:280–285 [CrossRef]
    [Google Scholar]
  37. Ramos C., Sánchez G., Pando R. H., Baquera J., Hernández D., Mota J., Ramos J., Flores A., Llausás E. 1998; Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J Neurovirol 4:465–468 [CrossRef]
    [Google Scholar]
  38. Rao R. K., Basuroy S., Rao V. U., Karnaky K. J. Jr, Gupta A. 2002; Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481 [CrossRef]
    [Google Scholar]
  39. Rigau-Pérez J. G., Clark G. G., Gubler D. J., Reiter P., Sanders E. J., Vorndam A. V. 1998; Dengue and dengue haemorrhagic fever. Lancet 352:971–977 [CrossRef]
    [Google Scholar]
  40. Sahaphong S., Riengrojpitak S., Bhamarapravati N., Chirachariyavej T. 1980; Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 11:194–204
    [Google Scholar]
  41. Schraufstatter I. U., Chung J., Burger M. 2001; IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol 280:L1094–L1103
    [Google Scholar]
  42. van Nieuw Amerongen G. P., Draijer R., Vermeer M. A., van Hinsberg V. W. M. 1998; Transient and prolonged increase in endothelial permeability induced by histamine and thrombin. Circ Res 83:1115–1123 [CrossRef]
    [Google Scholar]
  43. Xu Y., Swerlick R. A., Sepp N., Bosse D., Ades E. W., Lawley T. J. 1994; Characterization of expression and modulation of cell adhesion molecules on an immortalized human dermal microvascular endothelial cell line (HMEC-1). J Invest Dermatol 102:833–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19652-0
Loading
/content/journal/jgv/10.1099/vir.0.19652-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error