1887

Abstract

Emergence of antiviral drug resistance is a major challenge to human immunodeficiency virus (HIV) therapy. The archetypal example of this problem is loss of antiviral activity of the nucleoside analogue 3′-azido-3′-deoxythymidine (AZT), caused by mutations in reverse transcriptase (RT), the viral polymerase. AZT resistance results from an imbalance between rates of AZT-induced proviral DNA chain termination and RT-induced excision of the chain-terminating nucleotide. Conversion of the AZT prodrug from its monophosphorylated to diphosphorylated form by human thymidylate kinase (TMPK) is inefficient, resulting in accumulation of the monophosphorylated AZT metabolite (AZT-MP) and a low concentration of the active triphosphorylated metabolite (AZT-TP). We reasoned that introduction of an engineered, highly active TMPK into T cells would overcome this functional bottleneck in AZT activation and thereby shift the balance of AZT activity sufficiently to block replication of formerly AZT-resistant HIV. Molecular engineering was used to link highly active, engineered TMPKs to the protein transduction domain of Tat for direct cell delivery. Combined treatment of HIV-infected T cells with AZT and these cell-permeable, engineered TMPKs restored AZT-induced repression of viral production. These results provide an experimental basis for the development of new strategies to therapeutically increase the intracellular concentrations of active nucleoside analogue metabolites as a means to overcome emerging drug resistance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/000273-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1672.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/000273-0&mimeType=html&fmt=ahah

References

  1. Agarwal R. P., Mian A. M. 1991; Thymidine and zidovudine metabolism in chronically zidovudine-exposed cells in vitro. Biochem Pharmacol 42:905–911 [CrossRef]
    [Google Scholar]
  2. Arion D., Parniak M. A. 1999; HIV resistance to zidovudine: the role of pyrophosphorolysis. Drug Resist Updat 2:91–95 [CrossRef]
    [Google Scholar]
  3. Arion D., Kaushik N., McCormick S., Borkow G., Parniak M. A. 1998; Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37:15908–15917 [CrossRef]
    [Google Scholar]
  4. Brundiers R., Lavie A., Veit T., Reinstein J., Schlichting I., Ostermann N., Goody R. S., Konrad M. 1999; Modifying human thymidylate kinase to potentiate azidothymidine activation. J Biol Chem 274:35289–35292 [CrossRef]
    [Google Scholar]
  5. Efthymiadis A., Briggs L. J., Jans D. A. 1998; The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273:1623–1628 [CrossRef]
    [Google Scholar]
  6. Foley G. E., Lazarus H., Farber S., Uzman B. G., Boone B. A., McCarthy R. E. 1965; Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 18:522–529 [CrossRef]
    [Google Scholar]
  7. Fridland A., Connelly M. C., Ashmun R. 1990; Relationship of deoxynucleotide changes to inhibition of DNA synthesis induced by the antiretroviral agent 3′-azido-3′-deoxythymidine and release of its monophosphate by human lymphoid cells (CCRF-CEM). Mol Pharmacol 37:665–670
    [Google Scholar]
  8. Furman P. A., Fyfe J. A., St. Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S. other authors 1986; Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A 83:8333–8337 [CrossRef]
    [Google Scholar]
  9. Jong A. Y., Campbell J. L. 1984; Characterization of Saccharomyces cerevisiae thymidylate kinase, the CDC8 gene product. General properties, kinetic analysis, and subcellular localization. J Biol Chem 259:14394–14398
    [Google Scholar]
  10. Junker U., Baker J., Kalfoglou C. S., Veres G., Kaneshima H., Bohnlein E. 1997; Antiviral potency of drug–gene therapy combinations against human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 13:1395–1402 [CrossRef]
    [Google Scholar]
  11. Larder B. A., Kemp S. D. 1989; Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246:1155–1158 [CrossRef]
    [Google Scholar]
  12. Lavie A., Vetter I. R., Konrad M., Goody R. S., Reinstein J., Schlichting I. 1997; Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat Struct Biol 4:601–604 [CrossRef]
    [Google Scholar]
  13. Lavie A., Ostermann N., Brundiers R., Goody R. S., Reinstein J., Konrad M., Schlichting I. 1998; Structural basis for efficient phosphorylation of 3′-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Proc Natl Acad Sci U S A 95:14045–14050 [CrossRef]
    [Google Scholar]
  14. Lowe S. H., Prins J. M., Lange J. M. 2004; Antiretroviral therapy in previously untreated adults infected with the human immunodeficiency virus type I: established and potential determinants of virological outcome. Neth J Med 62:424–440
    [Google Scholar]
  15. Meier C., Lorey M., De Clercq E., Balzarini J. 1998; Cyclosal-2′,3′-dideoxy-2′,3′-didehydrothymidine monophosphate (cyclosal-d4TMP) – synthesis and antiviral evaluation of a new d4TMP delivery system. J Med Chem 41:1417–1427 [CrossRef]
    [Google Scholar]
  16. Meyer P. R., Matsuura S. E., Mian A. M., So A. G., Scott W. A. 1999; A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43 [CrossRef]
    [Google Scholar]
  17. Nara P. L., Fischinger P. J. 1988; Quantitative infectivity assay for HIV-1 and -2. Nature 332:469–470 [CrossRef]
    [Google Scholar]
  18. Nara P. L., Hatch W. C., Dunlop N. M., Robey W. G., Arthur L. O., Gonda M. A., Fischinger P. J. 1987; Simple, rapid, quantitative, syncytium-forming microassay for the detection of human immunodeficiency virus neutralizing antibody. AIDS Res Hum Retroviruses 3:283–302 [CrossRef]
    [Google Scholar]
  19. Ostermann N., Lavie A., Padiyar S., Brundiers R., Veit T., Reinstein J., Goody R. S., Konrad M., Schlichting I. 2000a; Potentiating AZT activation: structures of wild-type and mutant human thymidylate kinase suggest reasons for the mutants' improved kinetics with the HIV prodrug metabolite AZTMP. J Mol Biol 304:43–53 [CrossRef]
    [Google Scholar]
  20. Ostermann N., Schlichting I., Brundiers R., Konrad M., Reinstein J., Veit T., Goody R. S., Lavie A. 2000b; Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 8:629–642 [CrossRef]
    [Google Scholar]
  21. Qian M., Bui T., Ho R. J., Unadkat J. D. 1994; Metabolism of 3′-azido-3′-deoxythymidine (AZT) in human placental trophoblasts and Hofbauer cells. Biochem Pharmacol 48:383–389
    [Google Scholar]
  22. Sarafianos S. G., Das K., Clark A. D., Ding Jr, , J., Boyer P. L., Hughes S. H., Arnold E. 1999; Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with β -branched amino acids. Proc Natl Acad Sci U S A 96:10027–10032 [CrossRef]
    [Google Scholar]
  23. Schwarze S. R., Dowdy S. F. 2000; In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21:45–48 [CrossRef]
    [Google Scholar]
  24. Schwarze S. R., Ho A., Vocero-Akbani A., Dowdy S. F. 1999; In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 [CrossRef]
    [Google Scholar]
  25. Shaw G. M., Hahn B. H., Arya S. K., Groopman J. E., Gallo R. C., Wong-Staal F. 1984; Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226:1165–1171 [CrossRef]
    [Google Scholar]
  26. Tkachenko A. G., Xie H., Liu Y., Coleman D., Ryan J., Glomm W. R., Shipton M. K., Franzen S., Feldheim D. L. 2004; Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15:482–490 [CrossRef]
    [Google Scholar]
  27. Veal G. J., Back D. J. 1995; Metabolism of zidovudine. Gen Pharmacol 26:1469–1475 [CrossRef]
    [Google Scholar]
  28. Wagner C. R., Iyer V. V., McIntee E. J. 2000; Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 20:417–451 [CrossRef]
    [Google Scholar]
  29. Wöhrl B. M., Loubiere L., Brundiers R., Goody R. S., Klatzmann D., Konrad M. 2005; Expressing engineered thymidylate kinase variants in human cells to improve AZT phosphorylation and human immunodeficiency virus inhibition. J Gen Virol 86:757–764 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/000273-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/000273-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error