1887

Abstract

Feline infectious peritonitis virus (FIPV), a coronavirus that causes a lethal chronic disease in cats, enters feline monocytes via endocytosis. In this study, the pathway of internalization is characterized by evaluating the effect of chemical inhibitors and/or expression of dominant-negative (DN) proteins on the percentage of internalized virions per cell and infection. Further, co-localization studies were performed to determine the involvement of certain cellular internalization proteins. FIPV is not internalized through a clathrin-mediated pathway, as chlorpromazine, amantadine and DN eps15 did not influence virus uptake and FIPV did not co-localize with clathrin. The caveolae-mediated pathway could be excluded based on the inability of genistein and DN caveolin-1 to inhibit virus uptake and lack of co-localization between FIPV and caveolin-1. Dynamin inhibitory peptide and DN dynamin effectively inhibited virus internalization. The inhibitor strongly reduced uptake to 20.3±1.1 % of uptake in untreated cells. In the presence of DN dynamin, uptake was 58.7±3.9 % relative to uptake in untransduced cells. Internalization of FIPV was slightly reduced to 85.0±1.4 and 87.4±6.1 % of internalization in control cells by the sterol-binding drugs nystatin and methyl--cyclodextrin, respectively. Rho GTPases were inhibited by toxin B, but no effect was observed. These results were confirmed with infection studies showing that infection was not influenced by chlorpromazine, amantadine and genistein, but was significantly reduced by dynamin inhibition and nystatin. In conclusion, these results indicate that FIPV enters monocytes through a clathrin- and caveolae-independent pathway that strongly depends on dynamin and is slightly sensitive to cholesterol depletion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/001602-0
2008-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2147.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/001602-0&mimeType=html&fmt=ahah

References

  1. Araki N., Johnson M. T., Swanson J. A. 1996; A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260 [CrossRef]
    [Google Scholar]
  2. Barrias E. S., Dutra J. M. F., De Souza W., Carvalho T. M. U. 2007; Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun 363:828–834 [CrossRef]
    [Google Scholar]
  3. Benmerah A., Lamaze C., Bègue B., Schmid S. L., Dautry-Varsat A., Cerf-Bensussan N. 1998; AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 140:1055–1062 [CrossRef]
    [Google Scholar]
  4. Brodsky F. M., Chen C., Knuehl C., Towler M. C., Wakeham D. E. 2001; Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17:517–568 [CrossRef]
    [Google Scholar]
  5. Brown D. A., London E. 1998; Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136 [CrossRef]
    [Google Scholar]
  6. Cao H., Garcia F., McNiven M. 1998; Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609 [CrossRef]
    [Google Scholar]
  7. Cao H., Thompson H., Krueger E., McNiven M. 2000; Disruption of golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci 113:1993–2002
    [Google Scholar]
  8. Choi K. S., Aizaki H., Lai M. M. C. 2005; Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol 79:9862–9871 [CrossRef]
    [Google Scholar]
  9. Conner S. D., Schmid L. S. 2003; Regulated portals of entry into the cell. Nature 422:37–44 [CrossRef]
    [Google Scholar]
  10. Danielsen E. M. 1995; Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34:1596–1605 [CrossRef]
    [Google Scholar]
  11. Dewerchin H. L., Cornelissen E., Nauwynck H. J. 2005; Replication of feline coronaviruses in peripheral blood monocytes. Arch Virol 150:2483–2500 [CrossRef]
    [Google Scholar]
  12. Eifart P., Ludwig K., Böttcher C., de Haan C. A. M., Rottier P. J. M., Korte T., Herrmann A. 2007; The role of endocytosis and low pH in cell entry of the murine hepatitis virus MHV-A59. J Virol 81:10758–10768 [CrossRef]
    [Google Scholar]
  13. Ellis S., Mellor H. 2000; Regulation of endocytic traffic by Rho family GTPases. Trends Cell Biol 10:85–88 [CrossRef]
    [Google Scholar]
  14. Gold E. S., Underhill D. M., Morrissette N. S., Guo J., McNiven M. A., Aderem A. 1999; Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190:1849–1856 [CrossRef]
    [Google Scholar]
  15. Grabs D., Slepnev V. I., Songyang Z., David C., Lynch M., Cantley L. C., De Camilli P. 1997; The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J Biol Chem 272:13419–13425 [CrossRef]
    [Google Scholar]
  16. Grimmer S., van Deurs B., Sandvig K. 2002; Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115:2953–2962
    [Google Scholar]
  17. Hall A. 1998; Rho GTPases and the actin cytoskeleton. Science 279:509–514 [CrossRef]
    [Google Scholar]
  18. Hall A., Nobes C. D. 2000; Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970 [CrossRef]
    [Google Scholar]
  19. Hansen, G. H., Delmas, B., Besnardeau, L., Vogel, L. K., Laude, H., Sjöström, H. & Norèn, O. 1998; The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol 72:527–534
    [Google Scholar]
  20. Harding C., Heuser J., Stahl P. 1983; Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339 [CrossRef]
    [Google Scholar]
  21. Hinshaw J. E. 2000; Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519 [CrossRef]
    [Google Scholar]
  22. Inoue Y., Tanaka N., Tanaka Y., Inoue S., Morita K., Zhuang M., Hattori T., Sugamura K. 2007; Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail detected. J Virol 81:8722–8729 [CrossRef]
    [Google Scholar]
  23. Just I., Selzer J., Wilm M., Von-Eichel-Streiber C., Mann M., Aktories K. 1995; Glucosylation of rho proteins by Clostridium difficile toxin B. Nature 375:500–503 [CrossRef]
    [Google Scholar]
  24. Kim O. J., Lee D. H., Lee C. H. 2006; Close relationship between SARS-coronavirus and group 2 coronaviruses. J Microbiol 44:83–91
    [Google Scholar]
  25. Kirkham M., Parton R. G. 2005; Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746:349–363 [CrossRef]
    [Google Scholar]
  26. Kurzchalia T. V., Dupree P., Parton R. G., Kellner R., Virta H., Lehnert M., Simons K. 1992; VIP21, a 21-kD membrane protein is an integral component of trans-golgi-derived transport vesicles. J Cell Biol 118:1003–1014 [CrossRef]
    [Google Scholar]
  27. Lamaze C., Dujeancourt A., Baba T., Lo C. G., Benmerah A., Dautry-Varsat A. 2001; Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7:661–671 [CrossRef]
    [Google Scholar]
  28. Marsh M., Helenius A. 1989; Virus entry into animal cells. Adv Virus Res 36:107–151
    [Google Scholar]
  29. Mayor S., Pagano R. E. 2007; Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612 [CrossRef]
    [Google Scholar]
  30. McKeirnan A. J., Evermann J. F., Hargis A., Miller L. M., Ott R. L. 1981; Isolation of feline coronaviruses from two cats with diverse disease manifestations. Feline Pract 11:16–20
    [Google Scholar]
  31. Misinzo G., Meerts P., Bublot M., Mast J., Weingartl H. M., Nauwynck H. J. 2005; Binding and entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol 86:2057–2068 [CrossRef]
    [Google Scholar]
  32. Montesano R., Roth J., Robert A., Orci L. 1982; Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653 [CrossRef]
    [Google Scholar]
  33. Morelon E., Dautry-Varsat A. 1998; Endocytosis of the common cytokine receptor γ c chain: identification of sequences involved in internalization and degradation. J Biol Chem 273:22044–22051 [CrossRef]
    [Google Scholar]
  34. Nichols B. J., Lippincott-Schwartz J. 2001; Endocytosis without clathrin coats. Trends Cell Biol 11:406–412 [CrossRef]
    [Google Scholar]
  35. Nomura R., Kiyota A., Suzaki E., Kataoka K., Ohe Y., Miyamoto K., Senda T., Fujimoto T. 2004; Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol 78:8701–8708 [CrossRef]
    [Google Scholar]
  36. Parton R. G., Joggerst B., Simons K. 1994; Regulated internalization of caveolae. J Cell Biol 127:1199–1215 [CrossRef]
    [Google Scholar]
  37. Pelish H. E., Peterson J. R., Salvarezza S. B., Rodriguez-Boulan E., Chen J., Stamnes M., Macia E., Feng Y., Shair M. D., Kirchhausen T. 2006; Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro . Nat Chem Biol 2:39–46 [CrossRef]
    [Google Scholar]
  38. Pelkmans L., Helenius A. 2002; Endoytosis via caveolae. Traffic 3:311–320 [CrossRef]
    [Google Scholar]
  39. Pelkmans L., Helenius A. 2003; Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422 [CrossRef]
    [Google Scholar]
  40. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483 [CrossRef]
    [Google Scholar]
  41. Phonphok Y., Rosenthal K. S. 1991; Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett 281:188–190 [CrossRef]
    [Google Scholar]
  42. Racoosin E. L., Swanson J. A. 1994; Labeling of endocytic vesicles using fluorescent probes for fluid-phase endocytosis. In Cell Biology: A Laboratory Handbook vol 2 pp 375–380Edited by Celis J. E. New York: Academic Press;
    [Google Scholar]
  43. Riemann D., Hansen G. H., Niels-Christiansen L., Thorsen E., Immerdal L., Santos A. N., Kehlen A., Langner J., Danielsen E. M. 2001; Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J 354:47–55 [CrossRef]
    [Google Scholar]
  44. Rodal S. K., Skretting G., Garred Ø., Vilhardt F., van Deurs B., Sandvig K. 1999; Extraction of cholesterol with methyl- β -cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974 [CrossRef]
    [Google Scholar]
  45. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. 1992; Caveolin, a protein compound of caveolae membrane coats. Cell 68:673–682 [CrossRef]
    [Google Scholar]
  46. Roy A. M., Parker J. S., Parrish C. R., Whittaker G. R. 2000; Early stages of influenza virus entry into Mv-1 lung cells: involvement of dynamin. Virology 267:17–28 [CrossRef]
    [Google Scholar]
  47. Sanchez-San Martin C., Lopez T., Arias C. F., Lopez S. 2004; Characterization of rotavirus cell entry. J Virol 78:2310–2318 [CrossRef]
    [Google Scholar]
  48. Santos A. N., Langner J., Hermann M., Riemann D. 2000; Aminopeptidase N/CD13 is directly linked to signal transduction pathways in monocytes. Cell Immunol 201:22–32 [CrossRef]
    [Google Scholar]
  49. Sauvonnet N., Dujeancourt A., Dautry-Varsat A. 2005; Cortactin and dynamin are required for the clathrin-independent endocytosis of γ c cytokine receptor. J Cell Biol 168:155–163
    [Google Scholar]
  50. Savarino A., Boelaert J. R., Cassone A., Majori G., Cauda R. 2003; Effects of chloroquine on viral infections: an old drug against today's diseases?. Lancet Infect Dis 3:722–727 [CrossRef]
    [Google Scholar]
  51. Schluns K. S., Lefrancois L. 2003; Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279 [CrossRef]
    [Google Scholar]
  52. Schnitzer J. E., Oh P., Pinney E., Allard J. 1994; Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232 [CrossRef]
    [Google Scholar]
  53. Sieczkarski S. B., Whittaker G. R. 2002a; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545
    [Google Scholar]
  54. Sieczkarski S. B., Whittaker G. R. 2002b; Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76:10455–10464 [CrossRef]
    [Google Scholar]
  55. Simons K., Toomre D. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39
    [Google Scholar]
  56. Spector I., Shochet N. R., Kashman A., Groweiss Y. 1983; Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495 [CrossRef]
    [Google Scholar]
  57. Stove V., van de Walle I., Naessens E., Coene E., Stove C., Plum J., Verhasselt B. 2005; Human immunodeficiency virus Nef induces rapid internalization of the T-cell coreceptor CD8 αβ . J Virol 79:11422–11433 [CrossRef]
    [Google Scholar]
  58. Subtil A., Gaidarov I., Kobylarz K., Lampson M. A., Keen J. H., McGraw T. E. 1999; Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A 96:6775–6780 [CrossRef]
    [Google Scholar]
  59. Swanson J. A., Watts C. 1995; Macropinocytosis. Trends Cell Biol 5:424–428 [CrossRef]
    [Google Scholar]
  60. Thorp E. B., Gallagher T. M. 2004; Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol 78:2682–2692 [CrossRef]
    [Google Scholar]
  61. Van de Walle G. R., Favoreel H. W., Nauwynck H. J., van Oostveldt P., Pensaert M. B. 2001; Involvement of cellular cytoskeleton components in antibody-induced internalization of viral glycoproteins in pseudorabies virus-infected monocytes. Virology 288:129–138 [CrossRef]
    [Google Scholar]
  62. Van Hamme E., Dewerchin H. L., Cornelissen E., Nauwynck H. J. 2007; Attachment and internalization of feline infectious peritonitis virus in feline blood monocytes and Crandell feline kidney cells. J Gen Virol 88:2527–2535 [CrossRef]
    [Google Scholar]
  63. Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C. 2008; SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 18:290–301 [CrossRef]
    [Google Scholar]
  64. Wang L. H., Rothberg K. G., Anderson R. G. W. 1993; Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117 [CrossRef]
    [Google Scholar]
  65. Yang Z.-Y., Huang Y., Ganesh L., Leung K., Kong W.-P., Schwartz O., Subbarao K., Nabel G. J. 2004; pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by the dendritic cell transfer through DC-SIGN. J Virol 78:5642–5650 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/001602-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/001602-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error