1887

Abstract

Although the 2003 severe acute respiratory syndrome (SARS) outbreak was controlled, repeated transmission of SARS coronavirus (CoV) over several years makes the development of a SARS vaccine desirable. We performed a comparative evaluation of two SARS vaccines for their ability to protect against live SARS-CoV intranasal challenge in ferrets. Both the whole killed SARS-CoV vaccine (with and without alum) and adenovirus-based vectors encoding the nucleocapsid (N) and spike (S) protein induced neutralizing antibody responses and reduced viral replication and shedding in the upper respiratory tract and progression of virus to the lower respiratory tract. The vaccines also diminished haemorrhage in the thymus and reduced the severity and extent of pneumonia and damage to lung epithelium. However, despite high neutralizing antibody titres, protection was incomplete for all vaccine preparations and administration routes. Our data suggest that a combination of vaccine strategies may be required for effective protection from this pathogen. The ferret may be a good model for SARS-CoV infection because it is the only model that replicates the fever seen in human patients, as well as replicating other SARS disease features including infection by the respiratory route, clinical signs, viral replication in upper and lower respiratory tract and lung damage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/001891-0
2008-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2136.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/001891-0&mimeType=html&fmt=ahah

References

  1. Anton I. M., Gonzalez S., Bullido M. J., Corsin M., Risco C., Langeveld J. P., Enjuanes L. 1996; Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Res 46:111–124 [CrossRef]
    [Google Scholar]
  2. Bisht H., Roberts A., Vogel L., Bukreyev A., Collins P. L., Murphy B. R., Subbarao K., Moss B. 2004; Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101:6641–6646 [CrossRef]
    [Google Scholar]
  3. Boots A. M., Kusters J. G., van Noort J. M., Zwaagstra K. A., Rijke E., van der Zeijst B. A., Hensen E. J. 1991; Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology 74:8–13
    [Google Scholar]
  4. Bukreyev A., Lamirande E. W., Buchholz U. J., Vogel L. N., Elkins W. R., St Claire M., Murphy B. R., Subbarao K., Collins P. L. 2004; Mucosal immunisation of African green monkeys ( Cercopithecus aethiops ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122–2127 [CrossRef]
    [Google Scholar]
  5. Cavanagh D. 2003; Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32:567–582 [CrossRef]
    [Google Scholar]
  6. Chan K. H., Poon L. L., Cheng V. C., Guan Y., Hung I. F., Kong J., Yam L. Y., Seto W. H., Yuen K. Y., Peiris J. S. 2004; Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis 10:294–299 [CrossRef]
    [Google Scholar]
  7. Che X. Y., Di B., Zhao G. P., Wang Y. D., Qiu L. W., Hao W., Wang M., Qin P. Z., Liu Y. F. other authors 2006; A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003–2004 community outbreak of SARS in Guangzhou, China. Clin Infect Dis 43:e1–e5 [CrossRef]
    [Google Scholar]
  8. Chen W., Yan M., Yang L., Ding B., He B., Wang Y., Liu X., Liu C., Zhu H. other authors 2005; SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis 11:446–448 [CrossRef]
    [Google Scholar]
  9. Chu Y. K., Ali G. D., Jia F., Li Q., Kelvin D., Couch R. C., Harrod K. S., Hutt J. A., Cameron C. other authors 2008; The SARS-CoV ferret model in an infection-challenge study. Virology 374:151–163 [CrossRef]
    [Google Scholar]
  10. Collisson E. W., Pei J., Dzielawa J., Seo S. H. 2000; Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24:187–200 [CrossRef]
    [Google Scholar]
  11. Cui W., Fan Y., Wu W., Zhang F., Wang J. Y., Ni A. P. 2003; Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin Infect Dis 37:857–859 [CrossRef]
    [Google Scholar]
  12. Czub M., Weingartl H., Czub S., He R., Cao J. 2005; Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23:2273–2279 [CrossRef]
    [Google Scholar]
  13. Darnell M. E., Plant E. P., Watanabe H., Byrum R., St Claire M., Ward J. M., Taylor D. R. 2007; Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets. J Infect Dis 196:1329–1338 [CrossRef]
    [Google Scholar]
  14. Deming D., Sheahan T., Heise M., Yount B., Davis N., Sims A., Suthar M., Harkema J., Whitmore A. other authors 2006; Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3:e525 [CrossRef]
    [Google Scholar]
  15. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., Wang H., Shen H., Qiu L. other authors 2004; Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203:622–630 [CrossRef]
    [Google Scholar]
  16. Enjuanes L., Smerdou C., Castilla J., Anton I. M., Torres J. M., Sola I., Golvano J., Sanchez J. M., Pintado B. 1995; Development of protection against coronavirus induced diseases. A review. Adv Exp Med Biol 380:197–211
    [Google Scholar]
  17. Finlay B. B., See R. H., Brunham R. C. 2004; Rapid response research to emerging infectious diseases: lessons from SARS. Nat Rev Microbiol 2:602–607 [CrossRef]
    [Google Scholar]
  18. Fleck F. 2004; SARS virus returns to China as scientists race to find effective vaccine. Bull World Health Organ 82:152–153
    [Google Scholar]
  19. Fouchier R. A., Kuiken T., Schutten M., van Amerongen G., van Doornum G. J., van den Hoogen B. G., Peiris M., Lim W., Stohr K., Osterhaus A. D. 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  20. Glass W. G., Subbarao K., Murphy B., Murphy P. M. 2004; Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 173:4030–4039 [CrossRef]
    [Google Scholar]
  21. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J. other authors 2003; Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278 [CrossRef]
    [Google Scholar]
  22. Guan Y. J., Tang X. P., Zhang F. C., Chen Y. Q., Yin C. B., Li Y. M., Zhong N. S. 2005; Study of laboratory characteristic of 4 patients with sporadic severe acute respiratory syndrome in 2004. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 17:332–334
    [Google Scholar]
  23. Guo J. P., Petric M., Campbell W., McGeer P. L. 2004; SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 324:251–256 [CrossRef]
    [Google Scholar]
  24. Hogan R. J., Gao G., Rowe T., Bell P., Flieder D., Paragas J., Kobinger G. P., Wivel N. A., Crystal R. G. other authors 2004; Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires stat1. J Virol 78:11416–11421 [CrossRef]
    [Google Scholar]
  25. Hollander M., Wolfe D. 1973 Nonparametric Statistical Methods New York: Wiley;
    [Google Scholar]
  26. Holmes K. V. 2003; SARS coronavirus: a new challenge for prevention and therapy. J Clin Invest 111:1605–1609 [CrossRef]
    [Google Scholar]
  27. Kim T. W., Lee J. H., Hung C. F., Peng S., Roden R., Wang M. C., Viscidi R., Tsai Y. C., He L. other authors 2004; Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 78:4638–4645 [CrossRef]
    [Google Scholar]
  28. Kobinger G. P., Figueredo J. M., Rowe T., Zhi Y., Gao G., Sanmiguel J. C., Bell P., Wivel N. A., Zitzow L. A. other authors 2007; Adenovirus-based vaccine prevents pneumonia in ferrets challenged with the SARS coronavirus and stimulates robust immune responses in macaques. Vaccine 25:5220–5231 [CrossRef]
    [Google Scholar]
  29. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [CrossRef]
    [Google Scholar]
  30. Lawler J. V., Endy T. P., Hensley L. E., Garrison A., Fritz E. A., Lesar M., Baric R. S., Kulesh D. A., Norwood D. A. other authors 2006; Cynomolgus macaque as an animal model for severe acute respiratory syndrome. PLoS Med 3:e149 [CrossRef]
    [Google Scholar]
  31. Li Z., Guo X., Hao W., Wu Y., Ji Y., Zhao Y., Liu F., Xie X. 2003; The relationship between serum interleukins and T-lymphocyte subsets in patients with severe acute respiratory syndrome. Chin Med J (Engl 116:981–984
    [Google Scholar]
  32. Marra M. A., Jones S. J., Astell C. R., Holt R. A., Brooks-Wilson A., Butterfield Y. S., Khattra J., Asano J. K., Barber S. A. other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  33. Martina B. E., Haagmans B. L., Kuiken T., Fouchier R. A., Rimmelzwaan G. F., Van Amerongen G., Peiris J. S., Lim W., Osterhaus A. D. 2003; SARS virus infection of cats and ferrets. Nature 425:915 [CrossRef]
    [Google Scholar]
  34. Navas-Martin S. R., Weiss S. 2004; Coronavirus replication and pathogenesis: implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol 10:75–85 [CrossRef]
    [Google Scholar]
  35. Olsen C. W. 1993; A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 36:1–37 [CrossRef]
    [Google Scholar]
  36. Olsen C. W., Corapi W. V., Jacobson R. H., Simkins R. A., Saif L. J., Scott F. W. 1993; Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. J Gen Virol 74:745–749 [CrossRef]
    [Google Scholar]
  37. Reed L., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  38. Rockx B., Sheahan T., Donaldson E., Harkema J., Sims A., Heise M., Pickles R., Cameron M., Kelvin D., Baric R. 2007; Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice. J Virol 81:7410–7423 [CrossRef]
    [Google Scholar]
  39. Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Penaranda S., Bankamp B., Maher K. other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  40. Schmidt N., Emmons R. 1989; Diagnostic procedures for viral, rickettsial and chlamydia infections. In Cell Culture Procedures for Diagnostic Virology pp 81–82Edited by Schmidt. Washington, DC: American Public Health Association;
    [Google Scholar]
  41. See R.H., Roper R. L., Brunham R. C., Finlay B. B. 2005; Rapid response research – SARS coronavirus vaccines and application of processes to other emerging infectious diseases. Curr Immunol Rev 1:185–200 [CrossRef]
    [Google Scholar]
  42. See R. H., Zakhartchouk A. N., Petric M., Lawrence D. J., Mok C. P., Hogan R. J., Rowe T., Zitzow L. A., Karunakaran K. P. other authors 2006; Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol 87:641–650 [CrossRef]
    [Google Scholar]
  43. Seo S. H., Wang L., Smith R., Collisson E. W. 1997; The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71:7889–7894
    [Google Scholar]
  44. Skowronski D. M., Astell C., Brunham R. C., Low D. E., Petric M., Roper R. L., Talbot P. J., Tam T., Babiuk L. 2005; Severe acute respiratory syndrome (SARS): a year in review. Annu Rev Med 56:357–381 [CrossRef]
    [Google Scholar]
  45. Stohlman S. A., Kyuwa S., Polo J. M., Brady D., Lai M. M., Bergmann C. C. 1993; Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J Virol 67:7050–7059
    [Google Scholar]
  46. Stohlman S. A., Bergmann C. C., van der Veen R. C., Hinton D. R. 1995; Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 69:684–694
    [Google Scholar]
  47. Subbarao K., McAuliffe J., Vogel L., Fahle G., Fischer S., Tatti K., Packard M., Shieh W. J., Zaki S., Murphy B. 2004; Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78:3572–3577 [CrossRef]
    [Google Scholar]
  48. ter Meulen J., Bakker A. B., van den Brink E. N., Weverling G. J., Martina B. E., Haagmans B. L., Kuiken T., de Kruif J., Preiser W. other authors 2004; Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363:2139–2141 [CrossRef]
    [Google Scholar]
  49. To K. F., Tong J. H., Chan P. K., Au F. W., Chim S. S., Chan K. C., Cheung J. L., Liu E. Y., Tse G. M. other authors 2004; Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in situ hybridization study of fatal cases. J Pathol 202:157–163 [CrossRef]
    [Google Scholar]
  50. Wang M., Jing H. Q., Xu H. F., Jiang X. G., Kan B., Liu Q. Y., Wan K. L., Cui B. Y., Zheng H. other authors 2005; Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi 26:84–87
    [Google Scholar]
  51. Weingartl H., Czub M., Czub S., Neufeld J., Marszal P., Gren J., Smith G., Jones S., Proulx R. other authors 2004; Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 78:12672–12676 [CrossRef]
    [Google Scholar]
  52. Weiss R. C., Scott F. W. 1981; Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis 4:175–189 [CrossRef]
    [Google Scholar]
  53. Wesseling J. G., Godeke G. J., Schijns V. E., Prevec L., Graham F. L., Horzinek M. C., Rottier P. J. 1993; Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74:2061–2069 [CrossRef]
    [Google Scholar]
  54. WHO 2004a; Annex Table 2. Deaths by cause, sex and mortality stratum in WHO regions, estimates for; 2002 http://www.who.int/whr/2004/en/09_annexes_en.pdf
  55. WHO 2004b; Update 4: Review of probable and laboratory-confirmed SARS cases in southern China. Epidemic and Pandemic Alert and Response http://www.who.int/csr/don/2004_01_27/en/
    [Google Scholar]
  56. Yang Z. Y., Kong W. P., Huang Y., Roberts A., Murphy B. R., Subbarao K., Nabel G. J. 2004; A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564 [CrossRef]
    [Google Scholar]
  57. Ying W., Hao Y., Zhang Y., Peng W., Qin E., Cai Y., Wei K., Wang J., Chang G. other authors 2004; Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. Proteomics 4:492–504 [CrossRef]
    [Google Scholar]
  58. Zakhartchouk A. N., Liu Q., Petric M., Babiuk L. A. 2005; Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 23:4385–4391 [CrossRef]
    [Google Scholar]
  59. Zheng B. J., Wong K. H., Zhou J., Wong K. L., Young B. W., Lu L. W., Lee S. S. 2004; SARS-related virus predating SARS outbreak, Hong Kong. Emerg Infect Dis 10:176–178 [CrossRef]
    [Google Scholar]
  60. Zitzow L. A., Rowe T., Morken T., Shieh W. J., Zaki S., Katz J. M. 2002; Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J Virol 76:4420–4429 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/001891-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/001891-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error