1887

Abstract

CD8 cytotoxic T-lymphocyte (CTL) responses have been shown to be important in the control of human and simian immunodeficiency virus infections. Infection of sheep with visna/maedi virus (VISNA), a related lentivirus, induces specific CD8 CTL , but the specific viral proteins recognized are not known. To determine which VISNA antigens were recognized by sheep CTL, we used recombinant vaccinia viruses expressing the different genes of VISNA: in six sheep (Finnish Landrace×Dorset crosses, Friesland and Lleyn breeds) all VISNA proteins were recognized except TAT. Two sheep, shown to share major histocompatibility complex (MHC) class I alleles, recognized POL and were used to map the epitope. The gene is 3267 bp long encoding 1088 aa. By using recombinant vaccinia viruses a central portion (nt 1609–2176, aa 537–725) was found to contain the CTL epitope and this was mapped with synthetic peptides to a 25 aa region (aa 612–636). When smaller peptides were used, a cluster of epitopes was detected: at least three epitopes were present, at positions 612–623: DSRYAFEFMIRN; 620–631: MIRNWDEEVIKN; and 625–635: EEVIKNPIQAR. A DNA-prime-modified vaccinia virus Ankara (MVA)-boost strategy was employed to immunize four sheep shown to share MHC class I allele(s) with the sheep above. Specific CTL activity developed in all the immunized sheep within 3 weeks of the final MVA boost although half the sheep showed evidence of specific reactivity after the DNA-prime immunizations. This is the first report, to our knowledge, of induction of CTL by a DNA-prime-boost method in VISNA infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/002634-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/10/2586.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/002634-0&mimeType=html&fmt=ahah

References

  1. Amara R. R., Villinger F., Altman J. D., Lydy S. L., O'Neil S. P., Staprans S. I., Montefiori D. C., Xu Y., Herndon J. G. other authors 2002; Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine 20:1949–1955 [CrossRef]
    [Google Scholar]
  2. Babiuk L. A., Pontarollo R., Babiuk S., Loehr B., van Drunen Littel-van den Hurk S. 2003; Induction of immune responses by DNA vaccines in large animals. Vaccine 21:649–658 [CrossRef]
    [Google Scholar]
  3. Benito J. M., Lopez M., Soriano V. 2004; The role of CD8+ T-cell response in HIV infection. AIDS Rev 6:79–88
    [Google Scholar]
  4. Bird P., Blacklaws B., Reyburn H. T., Allen D., Hopkins J., Sargan D., McConnell I. 1993; Early events in immune evasion by the lentivirus maedi–visna occurring within infected lymphoid tissue. J Virol 67:5187–5197
    [Google Scholar]
  5. Blacklaws B. A., Bird P., Allen D., McConnell I. 1994; Circulating cytotoxic T lymphocyte precursors in maedi–visna virus-infected sheep. J Gen Virol 75:1589–1596 [CrossRef]
    [Google Scholar]
  6. Blacklaws B., Bird P., McConnell I. 1995a; Early events in infection of lymphoid tissue by a lentivirus, maedi–visna. Trends Microbiol 3:434–440 [CrossRef]
    [Google Scholar]
  7. Blacklaws B. A., Bird P., Allen D., Roy D. J., MacLennan I. C., Hopkins J., Sargan D. R., McConnell I. 1995b; Initial lentivirus–host interactions within lymph nodes: a study of maedi–visna virus infection in sheep. J Virol 69:1400–1407
    [Google Scholar]
  8. Brodie S. J., Marcom K. A., Pearson L. D., Anderson B. C., de la Concha-Bermejillo A., Ellis J. A., Demartini J. C. 1992; Effects of virus load in the pathogenesis of lentivirus-induced lymphoid interstitial pneumonia. J Infect Dis 166:531–541 [CrossRef]
    [Google Scholar]
  9. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of β -galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409
    [Google Scholar]
  10. Chaplin P. J., De Rose R., Boyle J. S., McWaters P., Kelly J., Tennent J. M., Lew A. M., Scheerlinck J. P. 1999; Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infect Immun 67:6434–6438
    [Google Scholar]
  11. Chisari F. V., Ferrari C. 1995; Hepatitis B virus immunopathology. Springer Semin Immunopathol 17:261–281
    [Google Scholar]
  12. Chung C., Mealey R. H., McGuire T. C. 2004; CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 327:144–154 [CrossRef]
    [Google Scholar]
  13. Chung C., Mealey R. H., McGuire T. C. 2005; Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 342:228–239 [CrossRef]
    [Google Scholar]
  14. De Rose R., Tennent J., McWaters P., Chaplin P. J., Wood P. R., Kimpton W., Cahill R., Scheerlinck J. P. 2002; Efficacy of DNA vaccination by different routes of immunisation in sheep. Vet Immunol Immunopathol 90:55–63 [CrossRef]
    [Google Scholar]
  15. Eriksson K., McInnes E., Ryan S., Tonks P., McConnell I., Blacklaws B. 1999; In vivo depletion of CD8+ cells does not affect primary maedi visna virus infection in sheep. Vet Immunol Immunopathol 70:173–187 [CrossRef]
    [Google Scholar]
  16. Flynn J. N., Keating P., Hosie M. J., Mackett M., Stephens E. B., Beatty J. A., Neil J. C., Jarrett O. 1996; Env-specific CTL predominate in cats protected from feline immunodeficiency virus infection by vaccination. J Immunol 157:3658–3665
    [Google Scholar]
  17. Gaddum R. M., Willis A. C., Ellis S. A. 1996; Peptide motifs from three cattle MHC (BoLA) class I antigens. Immunogenetics 43:238–239
    [Google Scholar]
  18. Gendelman H. E., Narayan O., Molineaux S., Clements J. E., Ghotbi Z. 1985; Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A 82:7086–7090 [CrossRef]
    [Google Scholar]
  19. Gendelman H. E., Narayan O., Kennedy-Stoskopf S., Kennedy P. G., Ghotbi Z., Clements J. E., Stanley J., Pezeshkpour G. 1986; Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. J Virol 58:67–74
    [Google Scholar]
  20. Gilbert S. C., Moorthy V. S., Andrews L., Pathan A. A., McConkey S. J., Vuola J. M., Keating S. M., Berthoud T., Webster D. other authors 2006; Synergistic DNA-MVA prime–boost vaccination regimes for malaria and tuberculosis. Vaccine 24:4554–4561 [CrossRef]
    [Google Scholar]
  21. Gorrell M. D., Brandon M. R., Sheffer D., Adams R. J., Narayan O. 1992; Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes. J Virol 66:2679–2688
    [Google Scholar]
  22. Graham S. P., Pellé R., Yamage M., Mwangi D. M., Honda Y., Mwakubambanya R. S., de Villiers E. P., Abuya E., Awino E. other authors 2008; Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva . Infect Immun 76:685–694 [CrossRef]
    [Google Scholar]
  23. Griffin D. E., Narayan O., Adams R. J. 1978; Early immune responses in visna, a slow viral disease of sheep. J Infect Dis 138:340–350 [CrossRef]
    [Google Scholar]
  24. Gurunathan S., Klinman D. M., Seder R. A. 2000; DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974 [CrossRef]
    [Google Scholar]
  25. Harty J. T., Tvinnereim A. R., White D. W. 2000; CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308 [CrossRef]
    [Google Scholar]
  26. Heeney J. L., Plotkin S. A. 2006; Immunological correlates of protection from HIV infection and disease. Nat Immunol 7:1281–1284 [CrossRef]
    [Google Scholar]
  27. Hislop A. D., Good M. F., Mateo L., Gardner J., Gatei M. H., Daniel R. C., Meyers B. V., Lavin M. F., Suhrbier A. 1998; Vaccine-induced cytotoxic T lymphocytes protect against retroviral challenge. Nat Med 4:1193–1196 [CrossRef]
    [Google Scholar]
  28. Hopkins J., Dutia B. M. 1990; Monoclonal antibodies to the sheep analogues of human CD45 (leucocyte common antigen), MHC class I and CD5. Differential expression after lymphocyte activation in vivo . Vet Immunol Immunopathol 24:331–346 [CrossRef]
    [Google Scholar]
  29. Hosie M. J., Flynn J. N., Rigby M. A., Cannon C., Dunsford T., Mackay N. A., Argyle D., Willett B. J., Miyazawa T. other authors 1998; DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. J Virol 72:7310–7319
    [Google Scholar]
  30. Janardhana V., Andrew M. E., Lobato Z. I., Coupar B. E. 1999; The ovine cytotoxic T lymphocyte responses to bluetongue virus. Res Vet Sci 67:213–221 [CrossRef]
    [Google Scholar]
  31. Kanaya S., Kohara A., Miura Y., Sekiguchi A., Iwai S., Inoue H., Ohtsuka E., Ikehara M. 1990; Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. J Biol Chem 265:4615–4621
    [Google Scholar]
  32. Larsen H. J., Hyllseth B., Krogsrud J. 1982; Experimental maedi virus infection in sheep: early cellular and humoral immune response following parenteral inoculation. Am J Vet Res 43:379–383
    [Google Scholar]
  33. Lee W. C., McConnell I., Blacklaws B. A. 1994; Cytotoxic activity against maedi-visna virus-infected macrophages. J Virol 68:8331–8338
    [Google Scholar]
  34. Lucchiari-Hartz M., Lindo V., Hitziger N., Gaedicke S., Saveanu L., van Endert P. M., Greer F., Eichmann K., Niedermann G. 2003; Differential proteasomal processing of hydrophobic and hydrophilic protein regions: contribution to cytotoxic T lymphocyte epitope clustering in HIV-1-Nef. Proc Natl Acad Sci U S A 100:7755–7760 [CrossRef]
    [Google Scholar]
  35. Madalinski W., Bankovski A., Korbecki M. 1977; Purification of vaccinia virus by zonal centrifugation and analysis of viral protein composition. Acta Virol 21:104–108
    [Google Scholar]
  36. Maecker H. T., Maino V. C. 2003; T cell immunity to HIV: defining parameters of protection. Curr HIV Res 1:249–259 [CrossRef]
    [Google Scholar]
  37. Mateo L., Gardner J., Suhrbier A. 2001; Delayed emergence of bovine leukemia virus after vaccination with a protective cytotoxic T cell-based vaccine. AIDS Res Hum Retroviruses 17:1447–1453 [CrossRef]
    [Google Scholar]
  38. McConkey S. J., Reece W. H., Moorthy V. S., Webster D., Dunachie S., Butcher G., Vuola J. M., Blanchard T. J., Gothard P. other authors 2003; Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9:729–735 [CrossRef]
    [Google Scholar]
  39. McDermott A. B., O'Connor D. H., Fuenger S., Piaskowski S., Martin S., Loffredo J., Reynolds M., Reed J., Furlott J. other authors 2005; Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in Adenovirus-boosted and DNA-primed Mamu-A*01-positive Rhesus macaques. J Virol 79:15556–15566 [CrossRef]
    [Google Scholar]
  40. McGuire T. C., Fraser D. G., Mealey R. H. 2004; Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 5:271–276 [CrossRef]
    [Google Scholar]
  41. McMichael A. J., Rowland-Jones S. L. 2001; Cellular immune responses to HIV. Nature 410:980–987 [CrossRef]
    [Google Scholar]
  42. McNeilly T. N., Tennant P., Luján L., Pérez M., Harkiss G. D. 2007; Differential infection efficiencies of peripheral lung and tracheal tissues in sheep infected with visna/maedi virus via the respiratory tract. J Gen Virol 88:670–679 [CrossRef]
    [Google Scholar]
  43. Narayan O., Clements J. E. 1989; Biology and pathogenesis of lentiviruses. J Gen Virol 70:1617–1639 [CrossRef]
    [Google Scholar]
  44. Pétursson G., Andrésdóttir V., Andrésson O., Torsteinsdóttir S., Georgsson G., Pálsson P. A. 1991; Human and ovine lentiviral infections compared. Comp Immunol Microbiol Infect Dis 14:277–287 [CrossRef]
    [Google Scholar]
  45. Pu R., Tellier M. C., Yamamoto J. K. 1997; Mechanism(s) of FIV vaccine protection. Leukemia 11 (Suppl. 3:98–101
    [Google Scholar]
  46. Rehermann B. 2000; Interaction between the hepatitis C virus and the immune system. Semin Liver Dis 20:127–141 [CrossRef]
    [Google Scholar]
  47. Reyburn H. T., Roy D. J., Blacklaws B. A., Sargan D. R., Watt N. J., McConnell I. 1992; Characteristics of the T cell-mediated immune response to maedi-visna virus. Virology 191:1009–1012 [CrossRef]
    [Google Scholar]
  48. Ryan S., Tiley L., McConnell I., Blacklaws B. 2000; Infection of dendritic cells by the maedi–visna lentivirus. J Virol 74:10096–10103 [CrossRef]
    [Google Scholar]
  49. Sánchez A. B., Rodríguez D., Garzón A., Amorena B., Esteban M., Rodríguez J. R. 2002; Visna/maedi virus Env protein expressed by a vaccinia virus recombinant induces cell-to-cell fusion in cells of different origins in the apparent absence of Env cleavage: role of glycosylation and of proteoglycans. Arch Virol 147:2377–2392 [CrossRef]
    [Google Scholar]
  50. Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. 1991; Nucleotide sequence of EV1, a British isolate of maedi–visna virus. J Gen Virol 72:1893–1903 [CrossRef]
    [Google Scholar]
  51. Scheerlinck J. P., Karlis J., Tjelle T. E., Presidente P. J., Mathiesen I., Newton S. E. 2004; In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 22:1820–1825 [CrossRef]
    [Google Scholar]
  52. Sihvonen L. 1981; Early immune responses in experimental maedi. Res Vet Sci 30:217–222
    [Google Scholar]
  53. Sinnathamby G., Seth S., Nayak R., Shaila M. S. 2004; Cytotoxic T cell epitope in cattle from the attachment glycoproteins of rinderpest and peste des petits ruminants viruses. Viral Immunol 17:401–410 [CrossRef]
    [Google Scholar]
  54. Torsteinsdóttir, S., Georgsson, G., Gísladóttir, E., Rafnar, B., Pálsson, P. A. & Pétursson, G. 1992; Pathogenesis of central nervous system lesions in visna: cell-mediated immunity and lymphocyte subsets in blood, brain and cerebrospinal fluid. J Neuroimmunol 41:149–158 [CrossRef]
    [Google Scholar]
  55. Toye P. G., MacHugh N. D., Bensaid A. M., Alberti S., Teale A. J., Morrison W. I. 1990; Transfection into mouse L cells of genes encoding two serologically and functionally distinct bovine class I MHC molecules from a MHC-homozygous animal: evidence for a second class I locus in cattle. Immunology 70:20–26.A
    [Google Scholar]
  56. Villet S., Bouzar B. A., Morin T., Verdier G., Legras C., Chebloune Y. 2003; Maedi–visna virus and caprine arthritis encephalitis virus genomes encode a Vpr-like but no Tat protein. J Virol 77:9632–9638 [CrossRef]
    [Google Scholar]
  57. Walker B. D., Korber B. T. 2001; Immune control of HIV: the obstacles of HLA and viral diversity. Nat Immunol 2:473–475 [CrossRef]
    [Google Scholar]
  58. Wang X., Wang J. P., Rao X. M., Price J. E., Zhou H. S., Lachman L. B. 2005; Prime–boost vaccination with plasmid and adenovirus gene vaccines control HER2/ neu + metastatic breast cancer in mice. Breast Cancer Res 7:R580–R588 [CrossRef]
    [Google Scholar]
  59. Watkins C., Hopkins J., Harkiss G. 2005; Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA. Vaccine 23:4247–4256 [CrossRef]
    [Google Scholar]
  60. Wong P., Pamer E. G. 2003; CD8 T cell responses to infectious pathogens. Annu Rev Immunol 21:29–70 [CrossRef]
    [Google Scholar]
  61. Wong D. K., Dudley D. D., Dohrenwend P. B., Lauer G. M., Chung R. T., Thomas D. L., Walker B. D. 2001; Detection of diverse hepatitis C virus (HCV)-specific cytotoxic T lymphocytes in peripheral blood of infected persons by screening for responses to all translated proteins of HCV. J Virol 75:1229–1235 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/002634-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/002634-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error