1887

Abstract

Hamsters experimentally infected with the neuroinvasive West Nile virus (WNV) strain NY385-99 frequently develop persistent renal infection and viruria. Viruses recovered from the urine of such animals no longer cause neurological disease when inoculated into naïve hamsters. To examine if this phenotypic change is stable, and if additional nucleotide changes occur during further passages, a urine isolate from a persistently infected hamster (WNV 9317B) was serially passaged in hamsters, and representative isolates from each passage were analysed for pathogenesis in hamsters and by nucleotide sequencing. The progeny viruses tested all resulted in asymptomatic infection when inoculated into hamsters and caused no mortality. Most of the original nucleotide changes were retained in these serial WNV isolates. Changes were distributed throughout the genome at 116 sites, ranging from 0.082 to 0.262 %, compared with the parent strain NY385-99, and they were mostly in coding regions. Our findings indicate that WNV underwent additional genetic changes during serial passage in hamsters, but there was no reversion to neurotropism and virulence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003210-0
2008-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3073.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003210-0&mimeType=html&fmt=ahah

References

  1. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. 1995; Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700
    [Google Scholar]
  2. Anderson J. F., Vossbrinck C. R., Andreadis T. G., Iton A., Beckwith W. H. III, Mayo D. R. 2001; A phylogenetic approach to following West Nile virus in Connecticut. Proc Natl Acad Sci U S A 98:12885–12889 [CrossRef]
    [Google Scholar]
  3. Asnis D. S., Conetta R., Teixeira A. A., Waldman G., Sampson B. A. 2000; The West Nile Virus outbreak of 1999 in New York: the Flushing Hospital experience. Clin Infect Dis 30:413–418 erratum appears in Clin Infect Dis 2000 May 30:5841 [CrossRef]
    [Google Scholar]
  4. Beasley D. W., Li L., Suderman M. T., Barrett A. D. 2001; West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations. Ann N Y Acad Sci 951:332–335
    [Google Scholar]
  5. Beasley D. W., Li L., Suderman M. T., Barrett A. D. 2002; Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23 [CrossRef]
    [Google Scholar]
  6. Beasley D. W., Davis C. T., Whiteman M., Granwehr B., Kinney R. M., Barrett A. D. 2004; Molecular determinants of virulence of West Nile virus in North America. Arch Virol Suppl 35–41
    [Google Scholar]
  7. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [CrossRef]
    [Google Scholar]
  8. Brault A. C., Langoria S. A., Bowen R. A., Panella N. A., Biggerstaff B. J., Miller B. R., Komar N. 2004; Differential virulence of West Nile virus strain for American crows. Emerg Infect Dis 10:2161–2168 [CrossRef]
    [Google Scholar]
  9. Ceccaldi P. E., Lucas M., Despres P. 2004; New insights on the neuropathology of West Nile virus. FEMS Microbiol Lett 233:1–6 [CrossRef]
    [Google Scholar]
  10. Centers for Disease Control and Prevention; 2002; Acute flaccid paralysis syndrome associated with West Nile virus infection – Mississippi and Louisiana, July–August 2002. MMWR Morb Mortal Wkly Rep 51:825–828
    [Google Scholar]
  11. Centers for Disease Control and Prevention; 2004; West Nile virus activity – United States, October 20–26, 2004. MMWR Morb Mortal Wkly Rep 53:996
    [Google Scholar]
  12. Crill W. D., Roehrig J. T. 2001; Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75:7769–7773 [CrossRef]
    [Google Scholar]
  13. Davis C. T., Beasley D. W., Guzman H., Siirin M., Parsons R. E., Tesh R. B., Barrett A. D. 2004; Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330:342–350 [CrossRef]
    [Google Scholar]
  14. Ding X., Wu X., Duan T., Siirin M., Guzman H., Yang Z., Tesh R. B., Xiao S. Y. 2005; Nucleotide and amino acid changes in West Nile virus strains exhibiting renal tropism in hamsters. Am J Trop Med Hyg 73:803–807
    [Google Scholar]
  15. Ebel G. D., Dupuis A. P., , II, Ngo K., Nicholas D., Kauffman E., Jones S. A., Young D., Maffei J., Shi P. Y. other authors 2001; Partial genetic characterization of West Nile virus strains. New York State: 2000 Emerg Infect Dis 7:650–653 [CrossRef]
    [Google Scholar]
  16. Glass J. D., Samuels O., Rich M. M. 2002; Poliomyelitis due to West Nile virus. N Engl J Med 347:1280–1281 [CrossRef]
    [Google Scholar]
  17. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C. 1991; Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 72:1323–1329 [CrossRef]
    [Google Scholar]
  18. Heinz F., Roehrig J. 1990; Flaviviruses. In Immunochemistry of Viruses. II. The Basis for Serodiagnosis and Vaccines pp 289–305 Edited by M. H. V. van Regenmortel & Neurath A. R. Amsterdam: Elsevier;
    [Google Scholar]
  19. Heinz F. X., Auer G., Stiasny K., Holzmann H., Mandl C., Guirakhoo F., Kunz C. 1994; The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch Virol Suppl 9:339–348
    [Google Scholar]
  20. Helenius A. 1995; Alphavirus and flavivirus glycoproteins: structures and functions. Cell 81:651–653 [CrossRef]
    [Google Scholar]
  21. Langevin S. A., Brault A. C., Panella N. A., Bowen R. A., Komar N. 2005; Variation in virulence of West Nile virus strains for house sparrows ( Passer domesticus ). Am J Trop Med Hyg 72:99–102
    [Google Scholar]
  22. Leis A. A., Stokic D. S., Polk J. L., Dostrow V., Winkelmann M. 2002; A poliomyelitis-like syndrome from West Nile virus infection. N Engl J Med 347:1279–1280 [CrossRef]
    [Google Scholar]
  23. Liu D. Y., Tesh R. B., Travassos Da Rosa A. P., Peters C. J., Yang Z., Guzman H., Xiao S.-Y. 2003; Phylogenetic relationships among members of the genus Phlebovirus ( Bunyaviridae ) based on partial M segment sequence analyses. J Gen Virol 84:465–473 [CrossRef]
    [Google Scholar]
  24. Ohry A., Karpin H., Yoeli D., Lazari A., Lerman Y. 2001; West Nile virus myelitis. Spinal Cord 39:662–663 [CrossRef]
    [Google Scholar]
  25. Randolph V. B., Stollar V. 1990; Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71:1845–1850 [CrossRef]
    [Google Scholar]
  26. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  27. Sbrana E., Tonry J. H., Xiao S. Y., da Rosa A. P., Higgs S., Tesh R. B. 2005; Oral transmission of West Nile virus in a hamster model. Am J Trop Med Hyg 72:325–329
    [Google Scholar]
  28. Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I. 2004; Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645 [CrossRef]
    [Google Scholar]
  29. Summers P. L., Cohen W. H., Ruiz M. M., Hase T., Eckels K. H. 1989; Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res 12:383–392 [CrossRef]
    [Google Scholar]
  30. Tesh R. B., , Travassos da Rosa A. P., Guzman H., Araujo T. P., Xiao S. Y. 2002a; Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251 [CrossRef]
    [Google Scholar]
  31. Tesh R. B., Arroyo J., Travassos Da Rosa A. P., Guzman H., Xiao S. Y., Monath T. P. 2002b; Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg Infect Dis 8:1392–1397 [CrossRef]
    [Google Scholar]
  32. Tesh R. B., Siirin M., Guzman H., , Travassos da Rosa A. P., Wu X., Duan T., Lei H., Nunes M. R., Xiao S. Y. 2005; Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis 192:287–295 [CrossRef]
    [Google Scholar]
  33. Tonry J. H., Xiao S.-Y., Siirin M., Chen H., , Travassos da Rosa A. P., Tesh R. B. 2005; Persistent shedding of West Nile virus in urine of experimentally infected hamsters. Am J Trop Med Hyg 72:320–324
    [Google Scholar]
  34. Xiao S.-Y., Guzman H., Zhang H., , Travassos da Rosa A. P. A., Tesh R. B. 2001a; West Nile virus infection in the golden hamster ( Mesocricetus auratus ): a model of West Nile encephalitis. Emerg Infect Dis 7:714–721 [CrossRef]
    [Google Scholar]
  35. Xiao S.-Y., Zhang H., Guzman H., Tesh R. 2001b; Experimental yellow fever virus infection in golden hamster ( Mesocricetus auratus ): II. Pathology. J Infect Dis 183:1437–1444 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003210-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003210-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error