1887

Abstract

Recombination is recognized as a primary force in human immunodeficiency virus type 1 (HIV-1) evolution, increasing viral diversity through reshuffling of genomic portions. The strand-switching activity of reverse transcriptase is required to complete HIV-1 replication and can occur randomly throughout the genome, leading to viral recombination. Some recombination hotspots have been identified and found to correlate with RNA structure or sequence features. The aim of this study was to evaluate the presence of recombination hotspots in the gene of HIV-1 and to assess their correlation with the underlying RNA structure. Analysis of the recombination pattern and breakpoint distribution in a group of unique recombinant forms (URFs) detected two recombination hotspots in the region. Two stable and conserved hairpins were consistently predicted corresponding to the identified hotspots using six different RNA-folding algorithms on the URF parental strains. These findings suggest that such hairpins may play a role in the higher recombination rates detected at these positions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003418-0
2008-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3119.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003418-0&mimeType=html&fmt=ahah

References

  1. Balakrishnan M., Fay P. J., Bambara R. A. 2001; The kissing hairpin sequence promotes recombination within the HIV-I 5′ leader region. J Biol Chem 276:36482–36492 [CrossRef]
    [Google Scholar]
  2. Balakrishnan M., Roques B. P., Fay P. J., Bambara R. A. 2003; Template dimerization promotes an acceptor invasion-induced transfer mechanism during human immunodeficiency virus type 1 minus-strand synthesis. J Virol 77:4710–4721 [CrossRef]
    [Google Scholar]
  3. Berkhout B., Vastenhouw N. L., Klasens B. I., Huthoff H. 2001; Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. RNA 7:1097–1114 [CrossRef]
    [Google Scholar]
  4. CASCADE Collaboration 2000; Effect of ignoring the time of HIV seroconversion in estimating changes in survival over calendar time in observational studies: results from CASCADE. AIDS 14:1899–1906 [CrossRef]
    [Google Scholar]
  5. Clavel F., Hoggan M. D., Willey R. L., Strebel K., Martin M. A., Repaske R. 1989; Genetic recombination of human immunodeficiency virus. J Virol 63:1455–1459
    [Google Scholar]
  6. Coffin J. M. 1979; Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42:1–26 [CrossRef]
    [Google Scholar]
  7. Coffin J. M. 1995; HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–489 [CrossRef]
    [Google Scholar]
  8. Ding Y., Chan C. Y., Lawrence C. E. 2004; Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141 [CrossRef]
    [Google Scholar]
  9. Dykes C., Balakrishnan M., Planelles V., Zhu Y., Bambara R. A., Demeter L. M. 2004; Identification of a preferred region for recombination and mutation in HIV-1 gag . Virology 326:262–279 [CrossRef]
    [Google Scholar]
  10. Galetto R., Negroni M. 2005; Mechanistic features of recombination in HIV. AIDS Rev 7:92–102
    [Google Scholar]
  11. Galetto R., Giacomoni V., Veron M., Negroni M. 2006; Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle. J Biol Chem 281:2711–2720
    [Google Scholar]
  12. Giuliano M., Galluzzo C. M., Germinario E. A., Amici R., Bassani L., Deho L., Vyankandondera J., Mmiro F., Okong P., Vella S. 2006; Selection of resistance mutations in children receiving prophylaxis with lamivudine or nevirapine for the prevention of postnatal transmission of HIV. J Acquir Immune Defic Syndr 42:131–133 [CrossRef]
    [Google Scholar]
  13. Goodrich D. W., Duesberg P. H. 1990; Retroviral recombination during reverse transcription. Proc Natl Acad Sci U S A 87:2052–2056 [CrossRef]
    [Google Scholar]
  14. Hofacker I. L., Stadler P. F. 1999; Automatic detection of conserved base pairing patterns in RNA virus genomes. Comput Chem 23:401–414 [CrossRef]
    [Google Scholar]
  15. Hofacker I. L., Fontana W., Stadler P. F., Bonhoeffer L. S., Tacker M., Schuster P. 1994; Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188 [CrossRef]
    [Google Scholar]
  16. Hofacker I. L., Fekete M., Stadler P. F. 2002; Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066 [CrossRef]
    [Google Scholar]
  17. Hu W. S., Temin H. M. 1990; Retroviral recombination and reverse transcription. Science 250:1227–1233 [CrossRef]
    [Google Scholar]
  18. Jetzt A. E., Yu H., Klarmann G. J., Ron Y., Preston B. D., Dougherty J. P. 2000; High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 74:1234–1240 [CrossRef]
    [Google Scholar]
  19. Kim J. K., Palaniappan C., Wu W., Fay P. J., Bambara R. A. 1997; Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J Biol Chem 272:16769–16777 [CrossRef]
    [Google Scholar]
  20. Knudsen B., Hein J. 2003; Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428 [CrossRef]
    [Google Scholar]
  21. Korber B. T., Kunstman K. J., Patterson B. K., Furtado M., McEvilly M. M., Levy R., Wolinsky S. M. 1994; Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68:7467–7481
    [Google Scholar]
  22. Lanciault C., Champoux J. J. 2006; Pausing during reverse transcription increases the rate of retroviral recombination. J Virol 80:2483–2494 [CrossRef]
    [Google Scholar]
  23. Leitner T., Korber B., Daniels M., Calef C., Foley B. 2005; HIV-1 subtype and circulating recombinant form (CRF) reference sequences. In HIV Sequence Compendium Los Alamos National Laboratory, NM, USA:
    [Google Scholar]
  24. Levy D. N., Aldrovandi G. M., Kutsch O., Shaw G. M. 2004; Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A 101:4204–4209 [CrossRef]
    [Google Scholar]
  25. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160
    [Google Scholar]
  26. Magiorkinis G., Paraskevis D., Vandamme A. M., Magiorkinis E., Sypsa V., Hatzakis A. 2003; In vivo characteristics of human immunodeficiency virus type 1 intersubtype recombination: determination of hot spots and correlation with sequence similarity. J Gen Virol 84:2715–2722 [CrossRef]
    [Google Scholar]
  27. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940 [CrossRef]
    [Google Scholar]
  28. McCaskill J. S. 1990; The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119 [CrossRef]
    [Google Scholar]
  29. Moumen A., Polomack L., Roques B., Buc H., Negroni M. 2001; The HIV-1 repeated sequence R as a robust hot-spot for copy-choice recombination. Nucleic Acids Res 29:3814–3821 [CrossRef]
    [Google Scholar]
  30. Moumen A., Polomack L., Unge T., Veron M., Buc H., Negroni M. 2003; Evidence for a mechanism of recombination during reverse transcription dependent on the structure of the acceptor RNA. J Biol Chem 278:15973–15982 [CrossRef]
    [Google Scholar]
  31. Peduzzi C., Pierotti P., Venturi G., Romano L., Mazzotta F., Zazzi M. 2002; Performance of an in-house genotypic antiretroviral resistance assay in patients pretreated with multiple human immunodeficiency virus type 1 protease and reverse transcriptase inhibitors. J Clin Virol 25:57–62
    [Google Scholar]
  32. Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. 1996; HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586 [CrossRef]
    [Google Scholar]
  33. Preston B. D., Poiesz B. J., Loeb L. A. 1988; Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171 [CrossRef]
    [Google Scholar]
  34. Rambaut A., Posada D., Crandall K. A., Holmes E. C. 2004; The causes and consequences of HIV evolution. Nat Rev Genet 5:52–61 [CrossRef]
    [Google Scholar]
  35. Roberts J. D., Bebenek K., Kunkel T. A. 1988; The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173 [CrossRef]
    [Google Scholar]
  36. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. 1995; Recombination in HIV-1. Nature 374:124–126
    [Google Scholar]
  37. Roda R. H., Balakrishnan M., Kim J. K., Roques B. P., Fay P. J., Bambara R. A. 2002; Strand transfer occurs in retroviruses by a pause-initiated two-step mechanism. J Biol Chem 277:46900–46911 [CrossRef]
    [Google Scholar]
  38. Temin H. M. 1993; Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci U S A 90:6900–6903 [CrossRef]
    [Google Scholar]
  39. Thomson M. M., Nájera R. 2005; Molecular epidemiology of HIV-1 variants in the global AIDS pandemic: an update. AIDS Rev 7:210–224
    [Google Scholar]
  40. Thomson M. M., Pérez-Alvarez L., Nájera R. 2002; Molecular epidemiology of HIV-1 genetic forms and its significance for vaccine development and therapy. Lancet Infect Dis 2:461–471 [CrossRef]
    [Google Scholar]
  41. Wainberg M. A. 2004; HIV-1 subtype distribution and the problem of drug resistance. AIDS 18:Suppl. 3S63–S68 [CrossRef]
    [Google Scholar]
  42. Wensing A. M., van de Vijver D. A., Angarano G., Asjo B., Balotta C., Boeri E., Camacho R., Chaix M. L., Costagliola D. other authors 2005; Prevalence of drug-resistant HIV-1 variants in untreated individuals in Europe: implications for clinical management. J Infect Dis 192:958–966 [CrossRef]
    [Google Scholar]
  43. Zhang J., Tang L. Y., Li T., Ma Y., Sapp C. M. 2000; Most retroviral recombinations occur during minus-strand DNA synthesis. J Virol 74:2313–2322 [CrossRef]
    [Google Scholar]
  44. Zhuang J., Jetzt A. E., Sun G., Yu H., Klarmann G., Ron Y., Preston B. D., Dougherty J. P. 2002; Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol 76:11273–11282 [CrossRef]
    [Google Scholar]
  45. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003418-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003418-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error