1887

Abstract

Pseudorecombination studies in demonstrate that yellow vein virus (AYVV) and yellow vein virus (EpYVV) can functionally interact with DNA- satellites associated with AYVV, EpYVV, cotton leaf curl Multan virus (CLCuMV) and honeysuckle yellow vein virus (HYVV). In contrast, CLCuMV shows some specificity in its ability to interact with distinct satellites and HYVV is able to interact only with its own satellite. Using an leaf disk assay, we have demonstrated that HYVV is unable to -replicate other satellites. To investigate the basis of -replication compatibility, deletion mutagenesis of AYVV DNA- has been used to localize the origin of replication to approximately 360 nt, encompassing the ubiquitous nonanucleotide/stem–loop structure, satellite conserved region (SCR) and part of the intergenic region immediately upstream of the SCR. Additional deletions within this intergenic region have identified a region that is essential for replication. The capacity for DNA- satellites to functionally interact with distinct geminivirus species and its implications for disease diversification are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/003848-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/3165.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/003848-0&mimeType=html&fmt=ahah

References

  1. Amin I., Mansoor S., Amrao L., Hussain M., Irum S., Zafar Y., Bull S. E., Briddon R. W. 2006; Mobilisation into cotton and spread of a recombinant cotton leaf curl disease satellite. Arch Virol 151:2055–2065 [CrossRef]
    [Google Scholar]
  2. Argüello-Astorga G. R., Ruiz-Medrano R. 2001; An iteron-related domain is associated to motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146:1465–1485 [CrossRef]
    [Google Scholar]
  3. Argüello-Astorga G. R., Guevara-Gonzales R. G., Herrera-Estrella L. R., Rivera-Bustamante R. F. 1994; Geminivirus replication origins have a group-specific organisation of iterative elements: a model for replication. Virology 203:90–100 [CrossRef]
    [Google Scholar]
  4. Briddon R. W., Stanley J. 2006; Subviral agents associated with plant single-stranded viruses. Virology 344:198–210 [CrossRef]
    [Google Scholar]
  5. Briddon R. W., Mansoor S., Bedford I. D., Pinner M. S., Saunders K., Stanley J., Zafar Y., Malik K. A., Markham P. G. 2001; Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243 [CrossRef]
    [Google Scholar]
  6. Briddon R. W., Bull S. E., Amin I., Idris A. M., Mansoor S., Bedford I. D., Dhawan P., Rishi N., Siwatch S. S. other authors 2003; Diversity of DNA β : a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121 [CrossRef]
    [Google Scholar]
  7. Briddon R. W., Bull S. E., Amin I., Mansoor S., Bedford I. D., Rishi N., Siwatch S. S., Zafar Y., Abdel-Salam A. M., Markham P. G. 2004; Diversity of DNA 1: a satellite molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474 [CrossRef]
    [Google Scholar]
  8. Cui X., Tao X., Xie Y., Fauquet C. M., Zhou X. 2004; A DNA β associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol 78:13966–13974 [CrossRef]
    [Google Scholar]
  9. Dry I. B., Krake L. R., Rigden J. E., Rezaian M. A. 1997; A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci U S A 94:7088–7093 [CrossRef]
    [Google Scholar]
  10. Etessami P., Watts J., Stanley J. 1989; Size reversion of African cassava mosaic virus coat protein gene deletion mutants during infection of Nicotiana benthamiana . J Gen Virol 70:277–289 [CrossRef]
    [Google Scholar]
  11. Fontes E. P. B., Luckow V. A., Hanley-Bowdoin L. 1992; A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4:597–608 [CrossRef]
    [Google Scholar]
  12. Fontes E. P. B., Eagle P. A., Sipe P. A., Luckow V. A., Hanley-Bowdoin L. 1994; Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465
    [Google Scholar]
  13. Gilbertson R. L., Sudarshana M., Jiang H., Rojas M. R., Lucas W. J. 2003; Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking. Plant Cell 15:2578–2591 [CrossRef]
    [Google Scholar]
  14. Gladfelter H. J., Eagle P. A., Fontes E. P. B., Batts L. A., Hanley-Bowdoin L. 1997; Two domains of the AL1 protein mediate geminivirus origin recognition. Virology 239:186–197 [CrossRef]
    [Google Scholar]
  15. Kheyr-Pour A., Bendahmane M., Matzeit V., Accotto G. P., Crespi S., Gronenborn B. 1991; Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res 19:6763–6769 [CrossRef]
    [Google Scholar]
  16. Klinkenberg F. A., Ellwood S., Stanley J. 1989; Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. J Gen Virol 70:1837–1844 [CrossRef]
    [Google Scholar]
  17. Laufs J., Traut W., Heyraud F., Matzeit V., Rogers S. G., Schell J., Gronenborn B. 1995; In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci U S A 92:3879–3883 [CrossRef]
    [Google Scholar]
  18. Li D., Behjatnia S. A. A., Dry I. B., Randles J. W., Eini O., Rezaian M. A. 2007; Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellite-mediated delivery of heterologous DNAs. J Gen Virol 88:2073–2077 [CrossRef]
    [Google Scholar]
  19. Lin B., Behjatnia S. A. A., Dry I. B., Randles J. W., Rezaian M. A. 2003; High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305:353–363 [CrossRef]
    [Google Scholar]
  20. Mansoor S., Briddon R. W., Bull S. E., Bedford I. D., Bashir A., Hussain M., Saeed M., Zafar Y., Malik K. A. other authors 2003; Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β . Arch Virol 148:1969–1986 [CrossRef]
    [Google Scholar]
  21. Marsh J. L., Erfle M., Wykes E. J. 1984; The pIC plasmid and phage vectors with versatile cloning sites for recombination selection by insertional inactivation. Gene 32:481–485 [CrossRef]
    [Google Scholar]
  22. Navot N., Pichersky E., Zeidan M., Zamir D., Czosnek H. 1991; Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185:151–161 [CrossRef]
    [Google Scholar]
  23. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using dideoxynucleotide-directed mutagenesis. Gene 26:101–106 [CrossRef]
    [Google Scholar]
  24. Qian Y., Zhou X. 2005; Pathogenicity and stability of a truncated DNA β associated with Tomato yellow leaf curl China virus . Virus Res 109:159–163 [CrossRef]
    [Google Scholar]
  25. Qian Y., Tan Z., Liu Y., Briddon R. W., Zhou X. 2008; Size reversion of a truncated DNA β associated with Tobacco curly shoot virus . Virus Res 131:288–292 [CrossRef]
    [Google Scholar]
  26. Saeed M., Behjatnia S. A. A., Mansoor S., Zafar Y., Hasnain S., Rezaian M. A. 2005; A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14 [CrossRef]
    [Google Scholar]
  27. Saunders K., Bedford I. D., Briddon R. W., Markham P. G., Wong S. M., Stanley J. 2000; A novel virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci U S A 97:6890–6895 [CrossRef]
    [Google Scholar]
  28. Saunders K., Bedford I. D., Stanley J. 2001; Pathogenicity of a natural recombinant associated with Ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. Virology 282:38–47 [CrossRef]
    [Google Scholar]
  29. Saunders K., Salim N., Mali V. R., Malathi V. G., Briddon R. W., Markham P. G., Stanley J. 2002; Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293:63–74 [CrossRef]
    [Google Scholar]
  30. Saunders K., Bedford I. D., Yahara T., Stanley J. 2003; The earliest recorded plant virus disease. Nature 422:831 [CrossRef]
    [Google Scholar]
  31. Saunders K., Norman A., Gucciardo S., Stanley J. 2004; The DNA β satellite component associated with Ageratum yellow vein disease encodes an essential pathogenicity protein ( β C1). Virology 324:37–47 [CrossRef]
    [Google Scholar]
  32. Stanley J., Saunders K., Pinner M. S., Wong S. M. 1997; Novel defective interfering DNAs associated with Ageratum yellow vein geminivirus infection of Ageratum conyzoides . Virology 239:87–96 [CrossRef]
    [Google Scholar]
  33. Stanley J., Bisaro D. M., Briddon R. W., Brown J. K., Fauquet C. M., Harrison B. D., Rybicki E. P., Stenger D. C. 2005; Geminiviridae . In Virus Taxonomy. VIIIth Report of the International Committee on Taxonomy of Viruses pp 301–326Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  34. Tan P. H. N., Wong S. M., Wu M., Bedford I. D., Saunders K., Stanley J. 1995; Genome organization of ageratum yellow vein virus, a monopartite whitefly-transmitted geminivirus isolated from a common weed. J Gen Virol 76:2915–2922 [CrossRef]
    [Google Scholar]
  35. Tao X., Zhou X. 2008; Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. J Gen Virol 89:306–311 [CrossRef]
    [Google Scholar]
  36. Tao X., Qing L., Zhou X. 2004; Function of A-rich region in DNA β associated with Tomato yellow leaf curl China virus . Chin Sci Bull 49:1490–1493 [CrossRef]
    [Google Scholar]
  37. van Engelen F. A., Molthoff J. W., Conner A. J., Nap J.-P., Pereira A., Stiekema W. J. 1995; pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290 [CrossRef]
    [Google Scholar]
  38. Zambryski P., Joos H., Genetello C., Leemans J., van Montagu M., Schell J. 1983; Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/003848-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/003848-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error