1887

Abstract

Sindbis virus (SINV) is a mosquito-borne virus in the genus , family . Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes () from or () from caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/005314-0
2008-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/11/2651.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/005314-0&mimeType=html&fmt=ahah

References

  1. Black W. C. IV, Bennett K. E., Gorróchotegui-Escalante N., Barillas-Mury C. V., Fernández-Salas I., de Lourdes Muñoz M., Farfan-Alé J. A., Olson K. E., Beaty B. J. 2002; Flavivirus susceptibility in Aedes aegypti . Arch Med Res 33:379–388 [CrossRef]
    [Google Scholar]
  2. Bowers D. F., Coleman C. G., Brown D. T. 2003; Sindbis virus-associated pathology in Aedes albopictus (Diptera: Culicidae. J Med Entomol 40:698–705 [CrossRef]
    [Google Scholar]
  3. Campbell C. L., Keene K. M., Brackney D. E., Olson K. E., Blair C. D., Wilusz J., Foy B. D. 2008; Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8:47 [CrossRef]
    [Google Scholar]
  4. Clem R. J. 2007; Baculoviruses and apoptosis: a diversity of genes and responses. Curr Drug Targets 8:1069–1074 [CrossRef]
    [Google Scholar]
  5. Clem R. J., Miller L. K. 1994; Control of programmed cell death by the baculovirus genes p35 and iap . Mol Cell Biol 14:5212–5222
    [Google Scholar]
  6. Cooper L. A., Sina B. J., Turell M. J., Scott T. W. 2000; Effects of initial dose on Eastern equine encephalomyelitis virus dependent mortality in intrathoracically inoculated Culiseta melanura (Diptera: Culicidae). J Med Entomol 37:815–819 [CrossRef]
    [Google Scholar]
  7. Fisher A. J., Cruz W., Zoog S. J., Schneider C. L., Friesen P. D. 1999; Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J 18:2031–2039 [CrossRef]
    [Google Scholar]
  8. Foy B. D., Myles K. M., Pierro D. J., Sanchez-Vargas I., Uhlirova M., Jindra M., Beaty B. J., Olson K. E. 2004; Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 13:89–100 [CrossRef]
    [Google Scholar]
  9. Girard Y. A., Popov V., Wen J., Han V., Higgs S. 2005; Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 42:429–444 [CrossRef]
    [Google Scholar]
  10. Girard Y. A., Schneider B. S., McGee C. E., Wen J., Han V. C., Popov V., Mason P. W., Higgs S. 2007; Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am J Trop Med Hyg 76:118–128
    [Google Scholar]
  11. Hahn C. S., Hahn Y. S., Braciale T. J., Rice C. M. 1992; Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci U S A 89:2679–2683 [CrossRef]
    [Google Scholar]
  12. Hay S., Kannourakis G. 2002; A time to kill: viral manipulation of the cell death program. J Gen Virol 83:1547–1564
    [Google Scholar]
  13. Hill C. A., Kafatos F. C., Stansfield S. K., Collins F. H. 2005; Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3:262–268 [CrossRef]
    [Google Scholar]
  14. Karpf A. R., Brown D. T. 1998; Comparison of Sindbis virus-induced pathology in mosquito and vertebrate cell cultures. Virology 240:193–201 [CrossRef]
    [Google Scholar]
  15. Keene K. M., Foy B. D., Sanchez-Vargas I., Beaty B. J., Blair C. D., Olson K. E. 2004; RNA interference acts as a natural antiviral response to O'nyong-nyong virus ( Alphavirus ; Togaviridae) infection of Anopheles gambiae . Proc Natl Acad Sci U S A 101:17240–17245 [CrossRef]
    [Google Scholar]
  16. Levine B., Huang Q., Isaacs J. T., Reed J. C., Griffin D. E., Hardwick J. M. 1993; Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361:739–742 [CrossRef]
    [Google Scholar]
  17. Lewis J., Wesselingh S. L., Griffin D. E., Hardwick J. M. 1996; Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 70:1828–1835
    [Google Scholar]
  18. Mims C. A., Day M. F., Marshall I. D. 1966; Cytopathic effect of Semliki Forest virus in the mosquito Aedes aegypti . Am J Trop Med Hyg 15:775–784
    [Google Scholar]
  19. Myles K. M., Pierro D. J., Olson K. E. 2004; Comparison of the transmission potential of two genetically distinct Sindbis viruses after oral infection of Aedes aegypti (Diptera: Culicidae. J Med Entomol 41:95–106 [CrossRef]
    [Google Scholar]
  20. Nava V. E., Rosen A., Veliuona M. A., Clem R. J., Levine B., Hardwick J. M. 1998; Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 72:452–459
    [Google Scholar]
  21. Olson K. E., Myles K. M., Seabaugh R. C., Higgs S., Carlson J. O., Beaty B. J. 2000; Development of a Sindbis virus expression system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Mol Biol 9:57–65 [CrossRef]
    [Google Scholar]
  22. O'Reilly D. R., Miller L. K., Luckow V. A. 1994 Baculovirus Expression Vectors: a Laboratory Manual New York: Oxford University Press;
    [Google Scholar]
  23. Pierro D. J., Myles K. M., Foy B. D., Beaty B. J., Olson K. E. 2003; Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti . Insect Mol Biol 12:107–116 [CrossRef]
    [Google Scholar]
  24. Pierro D. J., Powers E. L., Olson K. E. 2007; Genetic determinants of Sindbis virus strain TR339 affecting midgut infection in the mosquito Aedes aegypti . J Gen Virol 88:1545–1554 [CrossRef]
    [Google Scholar]
  25. Pronk G. J., Ramer K., Amiri P., Williams L. T. 1996; Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 271:808–810 [CrossRef]
    [Google Scholar]
  26. Raju R., Huang H. V. 1991; Analysis of Sindbis virus promoter recognition in vivo , using novel vectors with two subgenomic mRNA promoters. J Virol 65:2501–2510
    [Google Scholar]
  27. Sanchez-Vargas I., Travanty E. A., Keene K. M., Franz A. W., Beaty B. J., Blair C. D., Olson K. E. 2004; RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102:65–74 [CrossRef]
    [Google Scholar]
  28. Sanders H. R., Foy B. D., Evans A. M., Ross L. S., Beaty B. J., Olson K. E., Gill S. S. 2005; Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti . Insect Biochem Mol Biol 35:1293–1307 [CrossRef]
    [Google Scholar]
  29. Sim C., Hong Y. S., Tsetsarkin K. A., Vanlandingham D. L., Higgs S., Collins F. H. 2007; Anopheles gambiae heat shock protein cognate 70B impedes o'nyong-nyong virus replication. BMC Genomics 8:231 [CrossRef]
    [Google Scholar]
  30. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562
    [Google Scholar]
  31. Vaidyanathan R., Scott T. W. 2006; Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11:1643–1651 [CrossRef]
    [Google Scholar]
  32. Weaver S. C., Scott T. W., Lorenz L. H., Lerdthusnee K., Romoser W. S. 1988; Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J Virol 62:2083–2090
    [Google Scholar]
  33. Weaver S. C., Lorenz L. H., Scott T. W. 1992; Pathologic changes in the midgut of Culex tarsalis following infection with Western equine encephalomyelitis virus. Am J Trop Med Hyg 47:691–701
    [Google Scholar]
  34. Xi Z., Ramirez J. L., Dimopoulos G. 2008; The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098 [CrossRef]
    [Google Scholar]
  35. Xu G., Cirilli M., Huang Y., Rich R. L., Myszka D. G., Wu H. 2001; Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410:494–497 [CrossRef]
    [Google Scholar]
  36. Zhou L., Jiang G., Chan G., Santos C. P., Severson D. W., Xiao L. 2005; Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6:769–774 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/005314-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/005314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error