1887

Abstract

The interferon-induced murine Mx1 GTPase is a nuclear protein. It specifically inhibits influenza A viruses at the step of primary transcription, a process known to occur in the nucleus of infected cells. However, the exact mechanism of inhibition is still poorly understood. The Mx1 GTPase has previously been shown to accumulate in distinct nuclear dots that are spatially associated with promyelocytic leukaemia protein (PML) nuclear bodies (NBs), but the significance of this association is not known. Here it is reported that, in cells lacking PML and, as a consequence, PML NBs, Mx1 still formed nuclear dots. These dots were indistinguishable from the dots observed in wild-type cells, indicating that intact PML NBs are not required for Mx1 dot formation. Furthermore, Mx1 retained its antiviral activity against influenza A virus in these PML-deficient cells, which were fully permissive for influenza A virus. Nuclear Mx proteins from other species showed a similar subnuclear distribution. This was also the case for the human MxA GTPase when this otherwise cytoplasmic protein was translocated into the nucleus by virtue of a foreign nuclear localization signal. Human MxA and mouse Mx1 do not interact or form heterooligomers. Yet, they co-localized to a large degree when co-expressed in the nucleus. Taken together, these findings suggest that Mx1 dots represent distinct nuclear domains (‘Mx nuclear domains’) that are frequently associated with, but functionally independent of, PML NBs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79795-0
2004-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852315.html?itemId=/content/journal/jgv/10.1099/vir.0.79795-0&mimeType=html&fmt=ahah

References

  1. Accola M. A., Huang B., Al Masri A., McNiven M. A. 2002; The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J Biol Chem 277:21829–21835 [CrossRef]
    [Google Scholar]
  2. Blondel D., Regad T., Poisson N., Pavie B., Harper F., Pandolfi P. P., de The H., Chelbi-Alix M. K. 2002; Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 21:7957–7970 [CrossRef]
    [Google Scholar]
  3. Borden K. L. 2002; Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22:5259–5269 [CrossRef]
    [Google Scholar]
  4. Borden K. L., Campbell Dwyer E. J., Salvato M. S. 1998; An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72:758–766
    [Google Scholar]
  5. Chee A. V., Lopez P., Pandolfi P. P., Roizman B. 2003; Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77:7101–7105 [CrossRef]
    [Google Scholar]
  6. Chelbi-Alix M. K., Pelicano L., Quignon F., Koken M. H., Venturini L., Stadler M., Pavlovic J., Degos L., de The H. 1995; Induction of the PML protein by interferons in normal and APL cells. Leukemia 9:2027–2033
    [Google Scholar]
  7. Chelbi-Alix M. K., Quignon F., Pelicano L., Koken M. H., de The H. 1998; Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 72:1043–1051
    [Google Scholar]
  8. Der S. D., Zhou A., Williams B. R., Silverman R. H. 1998; Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628 [CrossRef]
    [Google Scholar]
  9. Djavani M., Rodas J., Lukashevich I. S., Horejsh D., Pandolfi P. P., Borden K. L., Salvato M. S. 2001; Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol 75:6204–6208 [CrossRef]
    [Google Scholar]
  10. Dreiding P., Staeheli P., Haller O. 1985; Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology 140:192–196 [CrossRef]
    [Google Scholar]
  11. Dull T., Zufferey R., Kelly M., Mandel R. J., Nguyen M., Trono D., Naldini L. 1998; A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471
    [Google Scholar]
  12. Engelhardt O. G., Ullrich E., Kochs G., Haller O. 2001; Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp Cell Res 271:286–295 [CrossRef]
    [Google Scholar]
  13. Engelhardt O. G., Boutell C., Orr A., Ullrich E., Haller O., Everett R. D. 2003; The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 283:36–50 [CrossRef]
    [Google Scholar]
  14. Everett R. D. 2001; DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20:7266–7273 [CrossRef]
    [Google Scholar]
  15. Flohr F., Schneider-Schaulies S., Haller O., Kochs G. 1999; The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett 463:24–28 [CrossRef]
    [Google Scholar]
  16. Garber E. A., Hreniuk D. L., Scheidel L. M., van der Ploeg L. H. 1993; Mutations in murine Mx1: effects on localization and antiviral activity. Virology 194:715–723 [CrossRef]
    [Google Scholar]
  17. Gautier C., Mehtali M., Lathe R. 1989; A ubiquitous mammalian expression vector, pHMG, based on a housekeeping gene promoter. Nucleic Acids Res 17:8389 [CrossRef]
    [Google Scholar]
  18. Gongora C., David G., Pintard L., Tissot C., Hua T. D., Dejean A., Mechti N. 1997; Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J Biol Chem 272:19457–19463 [CrossRef]
    [Google Scholar]
  19. Grotzinger T., Sternsdorf T., Jensen K., Will H. 1996; Interferon-modulated expression of genes encoding the nuclear-dot-associated proteins Sp100 and promyelocytic leukemia protein (PML). Eur J Biochem 238:554–560 [CrossRef]
    [Google Scholar]
  20. Guldner H. H., Szostecki C., Grotzinger T., Will H. 1992; IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis. J Immunol 149:4067–4073
    [Google Scholar]
  21. Haller O., Kochs G. 2002; Interferon-induced Mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3:710–717 [CrossRef]
    [Google Scholar]
  22. Haller O., Arnheiter H., Lindenmann J. 1976; Genetically determined resistance to infection by hepatotropic influenza A virus in mice: effect of immunosuppression. Infect Immun 13:844–854
    [Google Scholar]
  23. Haller O., Frese M., Rost D., Nuttall P. A., Kochs G. 1995; Tick-borne thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1. J Virol 69:2596–2601
    [Google Scholar]
  24. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [CrossRef]
    [Google Scholar]
  25. Israel A. 1979; Preliminary characterization of the particles from productive and abortive infections of L cells by fowl plague virus. Ann Microbiol (Paris) 130B:85–100
    [Google Scholar]
  26. Kochs G., Trost M., Janzen C., Haller O. 1998; MxA GTPase: oligomerization and GTP-dependent interaction with viral RNP target structures. Methods 15:255–263 [CrossRef]
    [Google Scholar]
  27. Kochs G., Haener M., Aebi U., Haller O. 2002; Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J Biol Chem 277:14172–14176 [CrossRef]
    [Google Scholar]
  28. Kolb E., Laine E., Strehler D., Staeheli P. 1992; Resistance to influenza virus infection of Mx transgenic mice expressing Mx protein under the control of two constitutive promoters. J Virol 66:1709–1716
    [Google Scholar]
  29. Lavau C., Marchio A., Fagioli M. 7 other authors 1995; The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11:871–876
    [Google Scholar]
  30. Lindenmann J., Deuel E., Fanconi S., Haller O. 1978; Inborn resistance of mice to myxoviruses: macrophages express phenotype in vitro. J Exp Med 147:531–540 [CrossRef]
    [Google Scholar]
  31. Meier E., Fah J., Grob M. S., End R., Staeheli P., Haller O. 1988; A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells. J Virol 62:2386–2393
    [Google Scholar]
  32. Melen K., Julkunen I. 1997; Nuclear cotransport mechanism of cytoplasmic human MxB protein. J Biol Chem 272:32353–32359 [CrossRef]
    [Google Scholar]
  33. Melen K., Ronni T., Broni B., Krug R. M., von Bonsdorff C. H., Julkunen I. 1992; Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J Biol Chem 267:25898–25907
    [Google Scholar]
  34. Nakayama M., Yazaki K., Kusano A., Nagata K., Hanai N., Ishihama A. 1993; Structure of mouse Mx1 protein. Molecular assembly and GTP-dependent conformational change. J Biol Chem 268:15033–15038
    [Google Scholar]
  35. Nason-Burchenal K., Gandini D., Botto M., Allopenna J., Seale J. R., Cross N. C., Goldman J. M., Dmitrovsky E., Pandolfi P. P. 1996; Interferon augments PML and PML/RAR alpha expression in normal myeloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid-resistant promyelocytic cell line. Blood 88:3926–3936
    [Google Scholar]
  36. Negorev D., Maul G. G. 2001; Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20:7234–7242 [CrossRef]
    [Google Scholar]
  37. Piazza F., Gurrieri C., Pandolfi P. P. 2001; The theory of APL. Oncogene 20:7216–7222 [CrossRef]
    [Google Scholar]
  38. Pitossi F., Blank A., Schroder A., Schwarz A., Hussi P., Schwemmle M., Pavlovic J., Staeheli P. 1993; A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol 67:6726–6732
    [Google Scholar]
  39. Ponten A., Sick C., Weeber M., Haller O., Kochs G. 1997; Dominant-negative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity. J Virol 71:2591–2599
    [Google Scholar]
  40. Rasheed Z. A., Saleem A., Ravee Y., Pandolfi P. P., Rubin E. H. 2002; The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies. Exp Cell Res 277:152–160 [CrossRef]
    [Google Scholar]
  41. Regad T., Chelbi-Alix M. K. 2001; Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20:7274–7286 [CrossRef]
    [Google Scholar]
  42. Regad T., Saib A., Lallemand-Breitenbach V., Pandolfi P. P., de The H., Chelbi-Alix M. K. 2001; PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J 20:3495–3505 [CrossRef]
    [Google Scholar]
  43. Salomoni P., Pandolfi P. P. 2002; The role of PML in tumor suppression. Cell 108:165–170 [CrossRef]
    [Google Scholar]
  44. Shiels C., Islam S. A., Vatcheva R., Sasieni P., Sternberg M. J., Freemont P. S., Sheer D. 2001; PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 114:3705–3716
    [Google Scholar]
  45. Staeheli P., Haller O. 1985; Interferon-induced human protein with homology to protein Mx of influenza virus-resistant mice. Mol Cell Biol 5:2150–2153
    [Google Scholar]
  46. Staeheli P., Haller O., Boll W., Lindenmann J., Weissmann C. 1986; Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44:147–158 [CrossRef]
    [Google Scholar]
  47. Staeheli P., Grob R., Meier E., Sutcliffe J. G., Haller O. 1988; Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol 8:4518–4523
    [Google Scholar]
  48. Toyoda T., Asano Y., Ishihama A. 1995; Role of GTPase activity of murine Mx1 protein in nuclear localization and anti-influenza virus activity. J Gen Virol 76:1867–1869 [CrossRef]
    [Google Scholar]
  49. Trost M., Kochs G., Haller O. 2000; Characterization of a novel serine/threonine kinase associated with nuclear bodies. J Biol Chem 275:7373–7377 [CrossRef]
    [Google Scholar]
  50. Wang I. F., Reddy N. M., Shen C. K. 2002; Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 99:13583–13588 [CrossRef]
    [Google Scholar]
  51. Wang J., Shiels C., Sasieni P., Wu P. J., Islam S. A., Freemont P. S., Sheer D. 2004; Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164:515–526 [CrossRef]
    [Google Scholar]
  52. Zhong S., Muller S., Ronchetti S., Freemont P. S., Dejean A., Pandolfi P. P. 2000a; Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752
    [Google Scholar]
  53. Zhong S., Salomoni P., Pandolfi P. P. 2000b; The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85–E90 [CrossRef]
    [Google Scholar]
  54. Zufferey R., Dull T., Mandel R. J., Bukovsky A., Quiroz D., Naldini L., Trono D. 1998; Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880
    [Google Scholar]
  55. Zurcher T., Pavlovic J., Staeheli P. 1992a; Mechanism of human MxA protein action: variants with changed antiviral properties. EMBO J 11:1657–1661
    [Google Scholar]
  56. Zurcher T., Pavlovic J., Staeheli P. 1992b; Nuclear localization of mouse Mx1 protein is necessary for inhibition of influenza virus. J Virol 66:5059–5066
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79795-0
Loading
/content/journal/jgv/10.1099/vir.0.79795-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error