1887

Abstract

Viral haemorrhagic septicaemia (VHS) caused by the rhabdovirus VHSV is economically the most important viral disease in European rainbow trout farming. Until 1989, this virus was mainly isolated from freshwater salmonids but in the last decade, it has also been isolated from an increasing number of free-living marine fish species. To study the genetic evolution of VHSV, the entire G gene from 74 isolates was analysed. VHSV from wild marine species caught in the Baltic Sea, Skagerrak, Kattegat, North Sea, and English Channel and European freshwater isolates, appeared to share a recent common ancestor. Based on the estimated nucleotide substitution rate, the ancestor of the European fresh water isolates was dated some 50 years ago. This finding fits with the initial reports in the 1950s on clinical observations of VHS in Danish freshwater rainbow trout farms. The study also indicates that European marine VHSV and the North American marine line separated approx. 500 years ago. The codon substitution rate among the freshwater VHSV isolates was found to be 2·5 times faster than among marine isolates. The data support the hypothesis of the marine environment being the original reservoir of VHSV and that the change in host range (to include rainbow trout) may have occurred several times. Virus from the marine environment will therefore continue to represent a threat to the trout aquaculture industry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79820-0
2004-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851167.html?itemId=/content/journal/jgv/10.1099/vir.0.79820-0&mimeType=html&fmt=ahah

References

  1. Batts W. N., Arakawa C. K., Bernard J., Winton J. R. 1993; Isolates of viral hemorrhagic septicemia virus from North America and Europe can be detected and distinguished by DNA probes. Dis Aquat Org 17:67–71
    [Google Scholar]
  2. Bearzotti M., Monnier A. F., Vende P., Grosclaude J., Kinkelin P., Benmansour A. 1995; The glycoprotein of viral hemorrhagic septicemia virus (VHSV): antigenicity and role in virulence. Vet Res 26:413–422
    [Google Scholar]
  3. Benmansour A., Basurco B., Monnier A. F., Vende P., Winton J. R., de Kinkelin P. 1997; Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral haemorrhagic septicaemia virus, a fish rhabdovirus. J Gen Virol 78:2837–2846
    [Google Scholar]
  4. Betts A. M., Stone D. M. 2000; Nucleotide sequence analysis of the entire coding regions of virulent and avirulent strains of viral haemorrhagic septicaemia virus. Virus Genes 20:259–262
    [Google Scholar]
  5. Castric J., Jeffroy J., Bearzotti M., de Kinkelin P., de Kinkelin P. 1992; Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild elvers Anguilla anguilla . Bull Eur Assoc Fish Pathol 12:21–23
    [Google Scholar]
  6. Dixon P. F. 1999; VHSV came from the marine environment: clues from the literature, or just red herrings?. Bull Eur Assoc Fish Pathol 19:60–65
    [Google Scholar]
  7. Dixon P. F., Feist S., Kehoe E., Parry L., Stone D. M., Way K. 1997; Isolation of viral haemorrhagic septicaemia virus from Atlantic herring Clupea harengus from the English Channel. Dis Aquat Organ 30:81–89
    [Google Scholar]
  8. Einer-Jensen K., Olesen N. J., Lorenzen N., Jørgensen P. E. 1995; Use of the polymerase chain reaction (PCR) to differentiate serologically similar viral haemorrhagic septicaemia (VHS) virus isolates from Europe and America. Vet Res 26:464–469
    [Google Scholar]
  9. Goldman N., Yang Z. 1994; A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736
    [Google Scholar]
  10. Hedrick R. P., Batts W. N., Yun S., Traxler G. S., Kaufman J., Winton J. R. 2003; Host and geographic range extensions of the North American strain of viral hemorrhagic septicemia virus. Dis Aquat Org 55:211–220
    [Google Scholar]
  11. Hershberger P. K., Kocan R. M., Elder N. E., Meyers T. R., Winton J. R. 1999; Epizootiology of viral hemorrhagic septicemia virus in Pacific herring from the spawn-on-kelp fishery in Prince William Sound, Alaska, USA. Dis Aquat Org 37:23–31
    [Google Scholar]
  12. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5:151–153
    [Google Scholar]
  13. Huang C., Chien M., Landolt M., Winton J. 1994; Characterization of the infectious haematopoietic necrosis virus glycoprotein using neutralizing monoclonal antibodies. Dis Aquat Org 18:29–35
    [Google Scholar]
  14. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165
    [Google Scholar]
  15. Jensen M. H. 1965; Research on the virus of Egtved disease. Ann N Y Acad Sci 126:422–426
    [Google Scholar]
  16. Jørgensen P. E. V. 1974; A study of viral diseases in Danish rainbow trout, their diagnosis and control . Thesis 1–101 Commissioned by A/S Carl Fr. Mortensen
  17. Jørgensen P. E. V., Castric J., Hill B., Ljungberg O., de Kinkelin P. 1994; The occurrence of virus infections in elvers and eels ( Anguilla anguilla ) in Europe with particular reference to VHSV and IHNV. Aquaculture 123:11–19
    [Google Scholar]
  18. Jørgensen P. E. V., Einer-Jensen K., Higman K. H., Winton J. R. 1995; Sequence comparison of the central region of the glycoprotein gene of neutralizable, non-neutralizable, and serially passed isolates of viral haemorrhagic septicaemia virus. Dis Aquat Org 23:77–82
    [Google Scholar]
  19. Kelley J. M., Emerson S. U., Wagner R. R. 1972; The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. J Virol 10:1231–1235
    [Google Scholar]
  20. King J. A., Snow M., Skall H. F., Raynard R. S. 2001a; Experimental susceptibility of Atlantic salmon Salmo salar and turbot Scophthalmus maximus to European freshwater and marine isolates of viral haemorrhagic septicaemia virus. Dis Aquat Org 47:25–31
    [Google Scholar]
  21. King J. A., Snow M., Smail D. A., Raynard R. S. 2001b; Distribution of viral haemorrhagic septicaemia virus in wild fish species of the North Sea, north east Atlantic Ocean and Irish Sea. Dis Aquat Org 47:81–86
    [Google Scholar]
  22. Kocan R., Bradley M., Elder N., Meyers T., Batts W., Winton J. 1997; North American strain of viral hemorrhagic septicemia virus is highly pathogenic for laboratory-reared pacific herring. J Aquat Anim Health 9:279–290
    [Google Scholar]
  23. Lorenzen N., Olesen N. J., Jorgensen P. E. V. 1988; Production and characterization of monoclonal antibodies to four Egtved virus structural proteins. Dis Aquat Org 4:35–42
    [Google Scholar]
  24. Lorenzen N., Olesen N. J., Jørgensen P. E. V. 1990; Neutralization of Egtved virus pathogenicity to cell cultures and fish by monoclonal antibodies to the viral G protein. J Gen Virol 71:561–567
    [Google Scholar]
  25. Lorenzen N., Olesen N. J., Koch C. 1999; Immunity to VHS virus in rainbow trout. Aquaculture 172:41–61
    [Google Scholar]
  26. Mortensen H. F., Heuer O. E., Lorenzen N., Otte L., Olesen N. J. 1999; Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild marine fish species in the Baltic Sea, Kattegat, Skagerrak and the North Sea. Virus Res 63:95–106
    [Google Scholar]
  27. Moya A., Elena S. F., Bracho A., Miralles R., Barrio E. 2000; The evolution of RNA viruses: a population genetics view. Proc Natl Acad Sci U S A 97:6967–6973
    [Google Scholar]
  28. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. I. 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:14
    [Google Scholar]
  29. Nishizawa T., Iida H., Takano R., Isshiki T., Nakajima K., Muroga K. 2002; Genetic relatedness among Japanese, American and European isolates of viral hemorrhagic septicemia virus (VHSV) based on partial G and P genes. Dis Aquat Org 48:143–148
    [Google Scholar]
  30. Nordblom B. 1998 Report on an Outbreak of Viral Haemorrhagic Septicaemia in Sweden Swedish Board of Agriculture;
    [Google Scholar]
  31. Nordblom B., Norell A. W. 2000; Report on an Outbreak of Viral Haemorrhagic Septicaemia in Farmed Fish in Sweden . Report for the Standing Veterinary Committee. Swedish Board of Agriculture, Department for Animal Production and Health
    [Google Scholar]
  32. Olesen N. J. 1998; Sanitation of viral haemorrhagic septicaemia (VHS). J Appl Ichthyol 14:173–177
    [Google Scholar]
  33. Page R. D. M. 1996; treeview: an application to display phylogentic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  34. Quer J., Huerta R., Novella I. S., Tsimring L., Domingo E., Holland J. J. 1996; Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J Mol Biol 264:465–471
    [Google Scholar]
  35. Rambaut A. 2000; Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399
    [Google Scholar]
  36. Ross K., McCarthy U., Huntly P. J., Wood B. P., Stuart D., Rough E. I., Smail D. A., Bruno D. W. 1995; A outbreak of viral haemorrhagic septicaemia (VHS) in turbot ( Scophthalmus maximus ) in Scotland. Bull Eur Assoc Fish Pathol 14:213–214
    [Google Scholar]
  37. Schutze H., Enzmann P. J., Mundt E., Mettenleiter T. C. 1996; Identification of the non-virion (NV) protein of fish rhabdoviruses viral haemorrhagic septicaemia virus and infectious haematopoietic necrosis virus. J Gen Virol 77:1259–1263
    [Google Scholar]
  38. Schutze H., Mundt E., Mettenleiter T. C. 1999; Complete genomic sequence of viral hemorrhagic septicemia virus, a fish rhabdovirus . Virus Genes 19:59–65
    [Google Scholar]
  39. Skall H. F., Slierendrecht W. J., King J. A., Olsen N. J. 2004; Experimental infection of rainbow trout Oncorhynchus mykiss with viral haemorrhagic septicaemia virus isolates from European marine and farmed fishes. Dis Aquat Org 58:99–110
    [Google Scholar]
  40. Smail D. A. 1995; Isolation and identification of viral haemorrhagic septicaemia (VHS) virus from North sea cod ( Gadus morhua L .). ICES Int Counc Explo Sea CM 1995/F15
    [Google Scholar]
  41. Smail D. A. 1999; Viral haemorrhagic septicaemia. In Viral, Bacterial and Fungal Infections . pp  123–147 Edited by Woo P. T. W., Bruno D. W. Wallingford, UK: CAB International;
  42. Snow M., Cunningham C. O., Melvin W. T., Kurath G. 1999; Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res 63:35–44
    [Google Scholar]
  43. Stone D. M., Way K., Dixon P. F. 1997; Nucleotide sequence of the glycoprotein gene of viral haemorrhagic septicaemia (VHS) viruses from different geographical areas: a link between VHS in farmed fish species and viruses isolated from North Sea cod ( Gadus morhua L. ). J Gen Virol 78:1319–1326
    [Google Scholar]
  44. Swofford D. L. 2000; paup* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4: Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  45. Takano R., Nishizawa T., Aritmoto M., Muroga K. 2000; Isolation of viral haemorrhagic septicaemia virus (VHSV) from wild Japanese flounder, Paralichthys olivaceus . Bull Eur Assoc Fish Pathol 20:186–192
    [Google Scholar]
  46. Thiéry R., de Boisséson C., Jeffroy J., Castric J., de Kinkelin P., Benmansour A. 2002; Phylogenetic analysis of viral haemorrhagic septicaemia virus (VHSV) isolates from France. Dis Aquat Org 52:29–37
    [Google Scholar]
  47. Troyer R. M., Kurath G. 2003; Molecular epidemiology of infectious hematopoietic necrosis virus reveals complex virus traffic and evolution within southern Idaho aquaculture. Dis Aquat Org 55:175–185
    [Google Scholar]
  48. Wiktor T. J., Gyorgy E., Schlumberger H. D., Sokol F., Koprowski H. 1973; Antigenic properties of rabies virus components. J Immunol 110:269–276
    [Google Scholar]
  49. Winton J., Batts W. N., Nishizawa T. 1989; Characterization of the first North American isolates of viral hemorrhagic septicaemia virus. Am Fish Soc Fish Health Section Newsl 17:2–3
    [Google Scholar]
  50. Wolf K. 1988; Viral hemorrhagic septicemia. In Fish Viruses and Fish Viral Diseases pp  217–249 Ithaca, NY: Cornell University Press;
    [Google Scholar]
  51. Wolf K., Gravell M., Malsberger R. G. 1966; Lymphocystis virus: isolation and propagation in centrarchid fish cell lines. Science 151:1004–1005
    [Google Scholar]
  52. Yang Z. 1993; Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401
    [Google Scholar]
  53. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 15:555–556
    [Google Scholar]
  54. Yoder A. D., Yang Z. 2000; Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17:1081–1090
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79820-0
Loading
/content/journal/jgv/10.1099/vir.0.79820-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error