1887

Abstract

Poxviruses express numerous proteins involved in manipulating the host immune response. Analysis of the primary sequence and predicted structure of the 134R protein of (Y134R) indicated that it is similar to cellular proteins of the IL-10 family, specifically IL-19, IL-20 and IL-24. A flag-tagged Y134R was expressed from mammalian cells and identified as a secreted, monomeric glycoprotein that stimulated signal transduction from class II cytokine receptors IL-20R/IL-20R (IL-20R type1) and IL-22R/IL-20R (IL-20R type 2). Y134R induced phosphorylation of signal transducers and activators of transcription, their translocation to the nucleus and the induction of reporter gene expression. In contrast, Y134R was unable to induce similar responses from either the IL-22 or IFN- (IL-28A, IL-28B, IL-29) class II cytokine receptors. To examine the role Y134R plays during a poxvirus infection, a vaccinia virus recombinant expressing Y134R was constructed and tested in a murine intranasal infection model. Compared with control viruses, the virus expressing Y134R had a reduced virulence, manifested by reduced weight loss, signs of illness and virus titres in infected organs. These results demonstrate that Y134R is a new viral member of the IL-10-related cytokine family and that its activity affects virus virulence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79980-0
2004-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851401.html?itemId=/content/journal/jgv/10.1099/vir.0.79980-0&mimeType=html&fmt=ahah

References

  1. Alcami A. 2003; Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50 [CrossRef]
    [Google Scholar]
  2. Alcami A., Smith G. L. 1992; A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  3. Alcami A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639
    [Google Scholar]
  4. Andrew M. E., Coupar B. E. 1992; Biological effects of recombinant vaccinia virus-expressed interleukin 4. Cytokine 4:281–286 [CrossRef]
    [Google Scholar]
  5. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976
    [Google Scholar]
  6. Bembridge G. P., Lopez J. A., Cook R., Melero J. A., Taylor G. 1998; Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. J Virol 72:4080–4087
    [Google Scholar]
  7. Blumberg H., Conklin D., Xu W. F. 23 other authors 2001; Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104:9–19 [CrossRef]
    [Google Scholar]
  8. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. 1988; Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771 [CrossRef]
    [Google Scholar]
  9. Boyle D. B., Coupar B. E. 1988; A dominant selectable marker for the construction of recombinant poxviruses. Gene 65:123–128 [CrossRef]
    [Google Scholar]
  10. Brunetti C. R., Amano H., Ueda Y., Qin J., Miyamura T., Suzuki T., Li X., Barrett J. W., McFadden G. 2003; Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus. J Virol 77:13335–13347 [CrossRef]
    [Google Scholar]
  11. Caudell E. G., Mumm J. B., Poindexter N. 7 other authors 2002; The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 168:6041–6046 [CrossRef]
    [Google Scholar]
  12. Chang C., Magracheva E., Kozlov S., Fong S., Tobin G., Kotenko S., Wlodawer A., Zdanov A. 2003; Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem 278:3308–3313 [CrossRef]
    [Google Scholar]
  13. Darnell J. E. Jr 1997; STATs and gene regulation. Science 277:1630–1635 [CrossRef]
    [Google Scholar]
  14. de Harven E., Yohn D. S. 1966; The fine structure of the Yaba monkey tumor poxvirus. Cancer Res 26:995–1008
    [Google Scholar]
  15. DeLano W. L. 2002 The PyMOL User's Manual San Carlos, CA: DeLano Scientific;
    [Google Scholar]
  16. Dumoutier L., Louahed J., Renauld J. C. 2000; Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819 [CrossRef]
    [Google Scholar]
  17. Dumoutier L., Lejeune D., Colau D., Renauld J. C. 2001a; Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol 166:7090–7095 [CrossRef]
    [Google Scholar]
  18. Dumoutier L., Leemans C., Lejeune D., Kotenko S. V., Renauld J. C. 2001b; Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167:3545–3549 [CrossRef]
    [Google Scholar]
  19. Espan∼a C., Brayton M. A., Ruebner B. H. 1971; Electron microscopy of the Tana poxvirus. Exp Mol Pathol 15:34–42 [CrossRef]
    [Google Scholar]
  20. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111
    [Google Scholar]
  21. Fleming S. B., McCaughan C. A., Andrews A. E., Nash A. D., Mercer A. A. 1997; A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol 71:4857–4861
    [Google Scholar]
  22. Gallagher G., Dickensheets H., Eskdale J. 7 other authors 2000; Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1:442–450 [CrossRef]
    [Google Scholar]
  23. Garn H., Schmidt A., Grau V., Stumpf S., Kaufmann A., Becker M., Gemsa D., Siese A. 2002; IL-24 is expressed by rat and human macrophages. Immunobiology 205:321–334 [CrossRef]
    [Google Scholar]
  24. Gherardi M. M., Ramirez J. C., Rodriguez D., Rodriguez J. R., Sano G., Zavala F., Esteban M. 1999; IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J Immunol 162:6724–6733
    [Google Scholar]
  25. Gherardi M. M., Ramirez J. C., Esteban M. 2003; IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. J Gen Virol 84:1961–1972 [CrossRef]
    [Google Scholar]
  26. Guex N., Peitsch M. C. 1997; swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723 [CrossRef]
    [Google Scholar]
  27. Hooft R. W., Vriend G., Sander C., Abola E. E. 1996; Errors in protein structures. Nature 381:272
    [Google Scholar]
  28. Huang E. Y., Madireddi M. T., Gopalkrishnan R. V. 18 other authors 2001; Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 20:7051–7063 [CrossRef]
    [Google Scholar]
  29. Jackson R. J., Ramsay A. J., Christensen C. D., Beaton S., Hall D. F., Ramshaw I. A. 2001; Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75:1205–1210 [CrossRef]
    [Google Scholar]
  30. Jiang H., Lin J. J., Su Z. Z., Goldstein N. I., Fisher P. B. 1995; Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477–2486
    [Google Scholar]
  31. Jiang H., Su Z. Z., Lin J. J., Goldstein N. I., Young C. S., Fisher P. B. 1996; The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci U S A 93:9160–9165 [CrossRef]
    [Google Scholar]
  32. Jones D. T. 1999; Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202 [CrossRef]
    [Google Scholar]
  33. Kawabe S., Nishikawa T., Munshi A., Roth J. A., Chada S., Meyn R. E. 2002; Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via TP53-independent mechanisms. Mol Ther 6:637–644 [CrossRef]
    [Google Scholar]
  34. Kelley L. A., MacCallum R., Sternberg M. J. E. 1999; Recognition of remote protein homologies using three-dimensional information to generate a position specific scoring matrix in the program 3D-pssm. In RECOMB 99, Proceedings of the Third Annual Conference on Computational Molecular Biology pp  218–225 Edited by Istrail P. P. Sorin, Waterman Michael. New York: Association for Computing Machinery;
    [Google Scholar]
  35. Kelley L. A., MacCallum R. M., Sternberg M. J. 2000; Enhanced genome annotation using structural profiles in the program 3D-pssm. J Mol Biol 299:499–520
    [Google Scholar]
  36. Knappe A., Hor S., Wittmann S., Fickenscher H. 2000; Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 74:3881–3887 [CrossRef]
    [Google Scholar]
  37. Kohonen-Corish M. R., King N. J., Woodhams C. E., Ramshaw I. A. 1990; Immunodeficient mice recover from infection with vaccinia virus expressing interferon-gamma. Eur J Immunol 20:157–161 [CrossRef]
    [Google Scholar]
  38. Kotenko S. V. 2002; The family of IL-10-related cytokines and their receptors: related, but to what extent?. Cytokine Growth Factor Rev 13:223–240 [CrossRef]
    [Google Scholar]
  39. Kotenko S. V., Saccani S., Izotova L. S., Mirochnitchenko O. V., Pestka S. 2000; Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A 97:1695–1700 [CrossRef]
    [Google Scholar]
  40. Kotenko S. V., Gallagher G., Baurin V. V. 7 other authors 2003; IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77
    [Google Scholar]
  41. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  42. Lebedeva I. V., Su Z. Z., Chang Y., Kitada S., Reed J. C., Fisher P. B. 2002; The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 21:708–718 [CrossRef]
    [Google Scholar]
  43. Lee H. J., Essani K., Smith G. L. 2001; The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281:170–192 [CrossRef]
    [Google Scholar]
  44. Lockridge K. M., Zhou S. S., Kravitz R. H., Johnson J. L., Sawai E. T., Blewett E. L., Barry P. A. 2000; Primate cytomegaloviruses encode and express an IL-10-like protein. Virology 268:272–280 [CrossRef]
    [Google Scholar]
  45. Moore K. W., Vieira P., Fiorentino D. F., Trounstine M. L., Khan T. A., Mosmann T. R. 1990; Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI. Science 248:1230–1234 [CrossRef]
    [Google Scholar]
  46. Mossman K., Upton C., Buller R. M., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 208:762–769 [CrossRef]
    [Google Scholar]
  47. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82:2095–2105
    [Google Scholar]
  48. Nicholas K. B. N. H. B. 1997 GeneDoc: a tool for editing and annotating multiple sequence alignments, 2.6.002 edn. Distributed by the author
    [Google Scholar]
  49. Parrish-Novak J., Xu W., Brender T. 10 other authors 2002; Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277:47517–47523 [CrossRef]
    [Google Scholar]
  50. Peitsch M. C. 1995; Protein modeling by E-mail. Bio/Technology 13:658–660 [CrossRef]
    [Google Scholar]
  51. Pletnev S., Magracheva E., Kozlov S., Tobin G., Kotenko S. V., Wlodawer A., Zdanov A. 2003; Characterization of the recombinant extracellular domains of human interleukin-20 receptors and their complexes with interleukin-19 and interleukin-20. Biochemistry 42:12617–12624 [CrossRef]
    [Google Scholar]
  52. Ramesh R., Mhashilkar A. M., Tanaka F. 11 other authors 2003; Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res 63:5105–5113
    [Google Scholar]
  53. Ramshaw I. A., Andrew M. E., Phillips S. M., Boyle D. B., Coupar B. E. 1987; Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature 329:545–546 [CrossRef]
    [Google Scholar]
  54. Ramshaw I., Ruby J., Ramsay A., Ada G., Karupiah G. 1992; Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo. Immunol Rev 127:157–182 [CrossRef]
    [Google Scholar]
  55. Reading P. C., Smith G. L. 2003; A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol 84:1973–1983 [CrossRef]
    [Google Scholar]
  56. Reading P. C., Symons J. A., Smith G. L. 2003; A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 170:1435–1442 [CrossRef]
    [Google Scholar]
  57. Renauld J. C. 2003; Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol 3:667–676 [CrossRef]
    [Google Scholar]
  58. Sambhi S. K., Kohonen-Corish M. R., Ramshaw I. A. 1991; Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci U S A 88:4025–4029 [CrossRef]
    [Google Scholar]
  59. Sanderson C. M., Parkinson J. E., Hollinshead M., Smith G. L. 1996; Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J Virol 70:905–914
    [Google Scholar]
  60. Sarkar D., Su Z. Z., Lebedeva I. V., Sauane M., Gopalkrishnan R. V., Valerie K., Dent P., Fisher P. B. 2002mda–7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A 99:10054–10059 [CrossRef]
    [Google Scholar]
  61. Sauane M., Gopalkrishnan R. V., Lebedeva I. 7 other authors 2003; Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways. J Cell Physiol 196:334–345 [CrossRef]
    [Google Scholar]
  62. Schaefer G., Venkataraman C., Schindler U. 2001; Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells. J Immunol 166:5859–5863 [CrossRef]
    [Google Scholar]
  63. Schwede T., Kopp J., Guex N., Peitsch M. C. 2003; swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385 [CrossRef]
    [Google Scholar]
  64. Seet B. T., Johnston J. B., Brunetti C. R. 7 other authors 2003; Poxviruses and immune evasion. Annu Rev Immunol 21:377–423 [CrossRef]
    [Google Scholar]
  65. Sheppard P., Kindsvogel W., Xu W. 23 other authors 2003; IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68 [CrossRef]
    [Google Scholar]
  66. Soo C., Shaw W. W., Freymiller E., Longaker M. T., Bertolami C. N., Chiu R., Tieu A., Ting K. 1999; Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J Cell Biochem 74:1–10 [CrossRef]
    [Google Scholar]
  67. Su Z. Z., Madireddi M. T., Lin J. J., Young C. S., Kitada S., Reed J. C., Goldstein N. I., Fisher P. B. 1998; The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A 95:14400–14405 [CrossRef]
    [Google Scholar]
  68. Su Z. Z., Lebedeva I. V., Sarkar D. 7 other authors 2003; Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene 22:1164–1180 [CrossRef]
    [Google Scholar]
  69. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002; A study of the vaccinia virus interferon-gamma receptor and its contribution to virus virulence. J Gen Virol 83:1953–1964
    [Google Scholar]
  70. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  71. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755
    [Google Scholar]
  72. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  73. Wang M., Tan Z., Zhang R., Kotenko S. V., Liang P. 2002; Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277:7341–7347 [CrossRef]
    [Google Scholar]
  74. Williamson J. D., Reith R. W., Jeffrey L. J., Arrand J. R., Mackett M. 1990; Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J Gen Virol 71:2761–2767 [CrossRef]
    [Google Scholar]
  75. Wolk K., Kunz S., Asadullah K., Sabat R. 2002; Cutting edge: immune cells as sources and targets of the IL-10 family members?. J Immunol 168:5397–5402 [CrossRef]
    [Google Scholar]
  76. Zhang R., Zhang H., Zhu W., Pardee A. B., Coffey R. J. Jr, Liang P. 1997; Mob-1, a Ras target gene, is overexpressed in colorectal cancer. Oncogene 14:1607–1610 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79980-0
Loading
/content/journal/jgv/10.1099/vir.0.79980-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error