1887

Abstract

Modified vaccinia virus Ankara (MVA) is a highly attenuated strain known to be an effective vaccine vector. Here it is demonstrated that MVA, unlike standard vaccinia virus (VACV) strains, activates monocyte-derived human dendritic cells (DCs) as testified by an increase in surface co-stimulatory molecules and the secretion of pro-inflammatory cytokines. Inhibition of virus gene expression by subjecting MVA to UV light or heat treatment did not alter its ability to activate DCs. On the other hand, standard VACV strains activated DCs if virus gene expression was prevented by prior UV light or heat treatment. These results suggest that MVA or standard VACV particles are responsible for DC activation but, in the case of standard VACV strains, virus gene expression prevents activation. Additional experiments showed that DCs were activated by MVA-infected HeLa cells and, under these conditions, could induce secretion of gamma interferon from T lymphocytes more efficiently than if a replication-competent VACV strain was employed. These data provide one explanation for the remarkable immune-stimulating capacity of MVA in the absence of virus multiplication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79998-0
2004-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852167.html?itemId=/content/journal/jgv/10.1099/vir.0.79998-0&mimeType=html&fmt=ahah

References

  1. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  2. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252 [CrossRef]
    [Google Scholar]
  3. Belyakov I. M., Earl P., Dzutsev A. 8 other authors 2003; Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100:9458–9463 [CrossRef]
    [Google Scholar]
  4. Bieback K., Lien E., Klagge I. M. 7 other authors 2002; Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736 [CrossRef]
    [Google Scholar]
  5. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  6. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [CrossRef]
    [Google Scholar]
  7. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A 94:3183–3188 [CrossRef]
    [Google Scholar]
  8. Brown M., Zhang Y., Dermine S., de Wynter E. A., Hart C., Kitchener H., Stern P. L., Skinner M. A., Stacey S. N. 2000; Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity. Gene Ther 7:1680–1689 [CrossRef]
    [Google Scholar]
  9. Burzyn D., Rassa J. C., Kim D., Nepomnaschy I., Ross S. R., Piazzon I. 2004; Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol 78:576–584 [CrossRef]
    [Google Scholar]
  10. Buttner M., Czerny C. P., Lehner K. H., Wertz K. 1995; Interferon induction in peripheral blood mononuclear leukocytes of man and farm animals by poxvirus vector candidates and some poxvirus constructs. Vet Immunol Immunopathol 46:237–250 [CrossRef]
    [Google Scholar]
  11. Carroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211 [CrossRef]
    [Google Scholar]
  12. Dorrell L., O'Callaghan C. A., Britton W., Hambleton S., McMichael A., Smith G. L., Rowland-Jones S., Blanchard T. J. 2000; Recombinant modified vaccinia virus Ankara efficiently restimulates human cytotoxic T lymphocytes in vitro. Vaccine 19:327–336 [CrossRef]
    [Google Scholar]
  13. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. 1998; Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79:347–352
    [Google Scholar]
  14. Drillien R., Spehner D., Bohbot A., Hanau D. 2000; Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268:471–481 [CrossRef]
    [Google Scholar]
  15. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768
    [Google Scholar]
  16. Falkner F. G., Moss B. 1988; Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J Virol 62:1849–1854
    [Google Scholar]
  17. Faradji A., Bohbot A., Schmitt-Goguel M. 7 other authors 1994; Large scale isolation of human blood monocytes by continuous flow centrifugation leukopheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients. J Immunol Methods 174:297–309 [CrossRef]
    [Google Scholar]
  18. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O'Neill L. A. 2003; The poxvirus protein A52R targets toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [CrossRef]
    [Google Scholar]
  19. Hirschowitz E. A., Weaver J. D., Hidalgo G. E., Doherty D. E. 2000; Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 7:1112–1120 [CrossRef]
    [Google Scholar]
  20. Howley P. M., Spehner D., Drillien R. 1996; A vaccinia virus transfer vector using a GUS reporter gene inserted into the I4L locus. Gene 172:233–237 [CrossRef]
    [Google Scholar]
  21. Howley P. M., Lafont B., Spehner D., Kaelin K., Billeter M. A., Drillien R. 1999; A functional measles virus replication and transcription machinery encoded by the vaccinia virus genome. J Virol Methods 79:65–74 [CrossRef]
    [Google Scholar]
  22. Ignatius R., Marovich M., Mehlhop E. 8 other authors 2000; Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. J Virol 74:11329–11338 [CrossRef]
    [Google Scholar]
  23. Jenne L., Hauser C., Arrighi J. F., Saurat J. H., Hugin A. W. 2000; Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther 7:1575–1583 [CrossRef]
    [Google Scholar]
  24. Joklik W. K. 1962; The purification of four strains of poxvirus. Virology 18:9–18 [CrossRef]
    [Google Scholar]
  25. Larsson M., Fonteneau J. F., Somersan S., Sanders C., Bickham K., Thomas E. K., Mahnke K., Bhardwaj N. 2001; Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. Eur J Immunol 31:3432–3442 [CrossRef]
    [Google Scholar]
  26. Mayr A., Hochstein V., Stickl H. 1975; Abstammung, Eigenschaften und Verwendung des attenuirten Vaccinia-Stammes MVA. Infection 3:3–11
    [Google Scholar]
  27. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038 [CrossRef]
    [Google Scholar]
  28. Moss B., Carroll M. W., Wyatt L. S. 12 other authors 1996; Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. Adv Exp Med Biol 397:7–13
    [Google Scholar]
  29. Oie K. L., Pickup D. J. 2001; Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF- κ B activation. Virology 288:175–187 [CrossRef]
    [Google Scholar]
  30. Ramirez M. C., Sigal L. J. 2002; Macrophages and dendritic cells use the cytosolic pathway to rapidly cross-present antigen from live, vaccinia-infected cells. J Immunol 169:6733–6742 [CrossRef]
    [Google Scholar]
  31. Rifkind D. 1967; Prevention by polymyxin B of endotoxin lethality in mice. J Bacteriol 93:1463–1464
    [Google Scholar]
  32. Sallusto F., Lanzavecchia A. 1994; Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118 [CrossRef]
    [Google Scholar]
  33. Sancho M. C., Schleich S., Griffiths G., Krijnse-Locker J. 2002; The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J Virol 76:8318–8334 [CrossRef]
    [Google Scholar]
  34. Stittelaar K. J., Kuiken T., de Swart R. L. 8 other authors; 2001; Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19:3700–3709 [CrossRef]
    [Google Scholar]
  35. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851 [CrossRef]
    [Google Scholar]
  36. Sutter G., Staib C. 2003; Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 3:263–271 [CrossRef]
    [Google Scholar]
  37. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040 [CrossRef]
    [Google Scholar]
  38. Trevor K. T., Hersh E. M., Brailey J., Balloul J. M., Acres B. 2001; Transduction of human dendritic cells with a recombinant modified vaccinia Ankara virus encoding MUC1 and IL-2. Cancer Immunol Immunother 50:397–407 [CrossRef]
    [Google Scholar]
  39. Tsung K., Yim J. H., Marti W., Buller R. M., Norton J. A. 1996; Gene expression and cytopathic effect of vaccinia virus inactivated by psoralen and long-wave UV light. J Virol 70:165–171
    [Google Scholar]
  40. Xia C. Q., Kao K. J. 2002; Heparin induces differentiation of CD1a+ dendritic cells from monocytes: phenotypic and functional characterization. J Immunol 168:1131–1138 [CrossRef]
    [Google Scholar]
  41. Yoshimura S., Bondeson J., Foxwell B. M., Brennan F. M., Feldmann M. 2001; Effective antigen presentation by dendritic cells is NF- κ B dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 13:675–683 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79998-0
Loading
/content/journal/jgv/10.1099/vir.0.79998-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error