1887

Abstract

Alternative splicing usually leads to an increase in the number of gene products that can be derived from a single transcript. Here, a different and novel use of alternative splicing – as a means to control the amount of a potentially toxic gene product in the plant pararetrovirus (CaMV) – is reported. About 70 % of the CaMV 35S RNA, which serves as a substrate for both reverse transcription and polycistronic mRNA, is spliced into four additional RNA species. Splicing occurs between four donor sites – one in the 5′ untranslated region and three within open reading frame (ORF) I – and one unique acceptor site at position 1508 in ORF II. A previous study revealed that the acceptor site is vital for CaMV infectivity and expression of ORFs III and IV from one of the spliced RNA species suggested that splicing may facilitate expression of downstream CaMV ORFs. However, it is shown here that deleting the splice acceptor site and replacing ORF II with a cargo ORF that lacks splice acceptor sites does not interfere with virus proliferation. Furthermore, it is demonstrated that whenever P2 cannot accumulate in infected tissues, the splice acceptor site at position 1508 is no longer vital and has little effect on virus replication. This suggests that the vital role of splicing in CaMV is regulation of P2 expression and that P2 exhibits biological properties that, whilst indispensable for virus–vector interactions, can block virus infection if this regulation is abolished.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80029-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852719.html?itemId=/content/journal/jgv/10.1099/vir.0.80029-0&mimeType=html&fmt=ahah

References

  1. Akusjarvi G., Stevenin J. 2003; Remodelling of the host cell RNA splicing machinery during an adenovirus infection. Curr Top Microbiol Immunol 272:253–286
    [Google Scholar]
  2. Blanc S., Cerutti M., Usmany M., Vlak J. M., Hull R. 1993; Biological activity of cauliflower mosaic virus aphid transmission factor expressed in a heterologous system. Virology 192:643–650 [CrossRef]
    [Google Scholar]
  3. Blanc S., Schmidt I., Vantard M., Scholthof H. B., Khul G., Espérandieu P., Cerutti M., Louis C. 1996; The aphid transmission factor of cauliflower mosaic virus forms a stable complex with microtubules in both insect and plant cells. Proc Natl Acad Sci U S A 93:15158–15163 [CrossRef]
    [Google Scholar]
  4. Blanc S., Hébrard E., Drucker M., Froissart R. 2001; Molecular basis of vector transmission: Caulimoviruses. In Virus–Insect–Plant Interactions pp  143–166 Edited by Harris K., Smith O. P., Duffus J. E. San Diego, CA: Academic Press;
    [Google Scholar]
  5. Bonneville J.-M., Hohn T. 1993; A reverse transcriptase for cauliflower mosaic virus: state of the art, 1991. In Reverse Transcriptase pp  357–390 Edited by Skalka A. M., Goff S. P. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  6. Brisson N., Paszkowski J., Penswick J. R., Gronenborn B., Potrykus I., Hohn T. 1984; Expression of a bacterial gene in plants by using a viral vector. Nature 310:511–514 [CrossRef]
    [Google Scholar]
  7. Butsch M., Boris-Lawrie K. 2002; Destiny of unspliced retroviral RNA: ribosome and/or virion?. J Virol 76:3089–3094 [CrossRef]
    [Google Scholar]
  8. De Zoeten G. A., Penswick J. R., Horisberger M. A., Ahl P., Schultze M., Hohn T. 1989; The expression, localization, and effect of human interferon in plants. Virology 172:213–222 [CrossRef]
    [Google Scholar]
  9. Drucker M., Froissart R., Hébrard E. 8 other authors 2002; Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc Natl Acad Sci U S A 99:2422–2427 [CrossRef]
    [Google Scholar]
  10. Franck A., Guilley H., Jonard G., Richards K., Hirth L. 1980; Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294 [CrossRef]
    [Google Scholar]
  11. Fütterer J., Potrykus I., Valles Brau M. P., Dasgupta I., Hull R., Hohn T. 1994; Splicing in a plant pararetrovirus. Virology 198:663–670 [CrossRef]
    [Google Scholar]
  12. Gardner R. C., Shepherd R. J. 1980; A procedure for rapid isolation and analysis of cauliflower mosaic virus DNA. Virology 106:159–161 [CrossRef]
    [Google Scholar]
  13. Hébrard E., Drucker M., Leclerc D. 9 other authors 2001; Biochemical characterization of the helper component of Cauliflower mosaic virus . J Virol 75:8538–8546 [CrossRef]
    [Google Scholar]
  14. Hirochika H., Takatsuji H., Ubasawa A., Ikeda J. 1985; Site-specific deletion in cauliflower mosaic virus DNA: possible involvement of RNA splicing and reverse transcription. EMBO J 4:1673–1680
    [Google Scholar]
  15. Howarth A. J., Gardner R. C., Messing J., Shepherd R. J. 1981; Nucleotide sequence of naturally occurring deletion mutants of cauliflower mosaic virus. Virology 112:678–685 [CrossRef]
    [Google Scholar]
  16. Huang H.-L., Jeng K.-S., Hu C.-P., Tsai C.-H., Lo S. J., Chang C. 2000; Identification and characterization of a structural protein of hepatitis B virus: a polymerase and surface fusion protein encoded by a spliced RNA. Virology 275:398–410 [CrossRef]
    [Google Scholar]
  17. Hull R. 2001 Matthews' Plant Virology , 4th edn. San Diego, CA: Academic Press;
    [Google Scholar]
  18. Karsies A., Merkle T., Szurek B., Bonas U., Hohn T., Leclerc D. 2002; Regulated nuclear targeting of cauliflower mosaic virus. J Gen Virol 83:1783–1790
    [Google Scholar]
  19. Kiss-László Z., Hohn T. 1996; Pararetro- and retrovirus RNA: splicing and the control of nuclear export. Trends Microbiol 4:480–485 [CrossRef]
    [Google Scholar]
  20. Kiss-László Z., Blanc S., Hohn T. 1995; Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14:3552–3562
    [Google Scholar]
  21. Kobayashi K., Tsuge S., Stavolone L., Hohn T. 2002; The cauliflower mosaic virus virion-associated protein is dispensable for viral replication in single cells. J Virol 76:9457–9464 [CrossRef]
    [Google Scholar]
  22. Kondrashov F. A., Koonin E. V. 2003; Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet 19:115–119 [CrossRef]
    [Google Scholar]
  23. Kriventseva E. V., Koch I., Apweiler R., Vingron M., Bork P., Gelfand M. S., Sunyaev S. 2003; Increase of functional diversity by alternative splicing. Trends Genet 19:124–128 [CrossRef]
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  25. Leh V., Jacquot E., Geldreich A., Hermann T., Leclerc D., Cerutti M., Yot P., Keller M., Blanc S. 1999; Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J 18:7077–7085 [CrossRef]
    [Google Scholar]
  26. Leh V., Jacquot E., Geldreich A., Haas M., Blanc S., Keller M., Yot P. 2001; Interaction between the open reading frame III product and the coat protein is required for transmission of cauliflower mosaic virus by aphids. J Virol 75:100–106 [CrossRef]
    [Google Scholar]
  27. Loeb D. D., Mack A. A., Tian R. 2002; A secondary structure that contains the 5′ and 3′ splice sites suppresses splicing of duck hepatitis B virus pregenomic RNA. J Virol 76:10195–10202 [CrossRef]
    [Google Scholar]
  28. Lu S., Cullen B. R. 2003; Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9:618–630 [CrossRef]
    [Google Scholar]
  29. Melcher U., Steffens D. L., Lyttle D. J., Lebeurier G., Lin H., Choe I. S., Essenberg R. C. 1986; Infectious and non-infectious mutants of cauliflower mosaic virus DNA. J Gen Virol 67:1491–1498 [CrossRef]
    [Google Scholar]
  30. Pirone T. P., Blanc S. 1996; Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247 [CrossRef]
    [Google Scholar]
  31. Pongoski J., Asai K., Cochrane A. 2002; Positive and negative modulation of human immunodeficiency virus type 1 Rev function by cis and trans regulators of viral RNA splicing. J Virol 76:5108–5120 [CrossRef]
    [Google Scholar]
  32. Ryabova L. A., Pooggin M. M., Hohn T. 2002; Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72:1–39
    [Google Scholar]
  33. Schmidt I., Blanc S., Espérandieu P., Kuhl G., Devauchelle G., Louis C., Cerutti M. 1994; Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc Natl Acad Sci U S A 91:8885–8889 [CrossRef]
    [Google Scholar]
  34. Scholthof H. B., Wu F. C., Richins R. D., Shepherd R. J. 1991; A naturally occurring deletion mutant of figwort mosaic virus (caulimovirus) is generated by RNA splicing. Virology 184:290–298 [CrossRef]
    [Google Scholar]
  35. Vaden V. R., Melcher U. 1990; Recombination sites in cauliflower mosaic virus DNAs: implications for mechanisms of recombination. Virology 177:717–726 [CrossRef]
    [Google Scholar]
  36. Wright E. A., Heckel T., Groenendijk J., Davies J. W., Boulton M. 1997; Splicing features in maize streak virus virion- and complementary-sense gene expression. Plant J 12:1285–1297 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80029-0
Loading
/content/journal/jgv/10.1099/vir.0.80029-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error