1887

Abstract

Z-100 is an arabinomannan extracted from that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-) and -chemokines. The effects of Z-100 on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucΔenv vector (in which the gene is defective and the gene is replaced with the firefly luciferase gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced IFN- production in these cells, resulting in induction of the 16-kDa CCAAT/enhancer binding protein (C/EBP) transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80046-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/9/vir852603.html?itemId=/content/journal/jgv/10.1099/vir.0.80046-0&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. 1996; CC CKR5: a RANTES, MIP-1 α , MIP-1 β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958 [CrossRef]
    [Google Scholar]
  2. Bakri Y., Schiffer C., Zennou V., Charneau P., Kahn E., Benjouad A., Gluckman J. C., Canque B. 2001; The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication. J Immunol 166:3780–3788 [CrossRef]
    [Google Scholar]
  3. Bernstein M. S., Tong-Starksen S. E., Locksley R. M. 1991; Activation of human monocyte-derived macrophages with lipopolysaccharide decreases human immunodeficiency virus replication in vitro at the level of gene expression. J Clin Invest 88:540–545 [CrossRef]
    [Google Scholar]
  4. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. 1995; Identification of RANTES, MIP-1 α , and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815 [CrossRef]
    [Google Scholar]
  5. Connor R. I., Ho D. D. 1994; Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 68:4400–4408
    [Google Scholar]
  6. da Silva Correia J., Soldau K., Christen U., Tobias P. S., Ulevitch R. J. 2001; Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. J Biol Chem 276:21129–21135 [CrossRef]
    [Google Scholar]
  7. De La Tribonniere X., Mouton Y., Vidal V. 7 other authors 2003; A phase I study of a six-week cycle of immunotherapy with Murabutide in HIV-1 patients naïve to antiretrovirals. Med Sci Monit 9:PI61–PI68
    [Google Scholar]
  8. Deng H., Liu R., Ellmeier W. 12 other authors 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666 [CrossRef]
    [Google Scholar]
  9. Descombes P., Schibler U. 1991; A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67:569–579 [CrossRef]
    [Google Scholar]
  10. Dragic T., Litwin V., Allaway G. P. 8 other authors 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673 [CrossRef]
    [Google Scholar]
  11. Emori Y., Sasaki H., Hayashi Y., Nomoto K. 1996; Effect of Z-100, an immunomodulator extracted from human type tubercle bacilli, on the pulmonary metastases of Lewis lung carcinoma in attempt to regulate suppressor T cells and suppressor factor, IL-4. Biotherapy 9:249–256 [CrossRef]
    [Google Scholar]
  12. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [CrossRef]
    [Google Scholar]
  13. Gaynor R. 1992; Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6:347–363 [CrossRef]
    [Google Scholar]
  14. Hale K. K., Trollinger D., Rihanek M., Manthey C. L. 1999; Differential expression and activation of p38 mitogen-activated protein kinase α , β , γ , and δ in inflammatory cell lineages. J Immunol 162:4246–4252
    [Google Scholar]
  15. Hayashi Y., Ebina T., Suzuki F., Ishida N. 1981; Interferon-inducing activity of an immunotherapeutic anticancer agent, SSM, prepared from Mycobacterium tuberculosis strain Aoyama B. Microbiol Immunol 25:305–316 [CrossRef]
    [Google Scholar]
  16. Henderson A. J., Calame K. L. 1997; CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4+ T cells. Proc Natl Acad Sci U S A 94:8714–8719 [CrossRef]
    [Google Scholar]
  17. Henderson A. J., Zou X., Calame K. L. 1995; C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69:5337–5344
    [Google Scholar]
  18. Henderson A. J., Connor R. I., Calame K. L. 1996; C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101 [CrossRef]
    [Google Scholar]
  19. Hill C. M., Deng H., Unutmaz D., Kewalramani V. N., Bastiani L., Gorny M. K., Zolla-Pazner S., Littman D. R. 1997; Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J Virol 71:6296–6304
    [Google Scholar]
  20. Honda Y., Rogers L., Nakata K., Zhao B-Y., Pine R., Nakai Y., Kurosu K., Rom W. N., Weiden M. 1998; Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP) β , repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 188:1255–1265 [CrossRef]
    [Google Scholar]
  21. Kaisho T., Takeuchi O., Kawai T., Hoshino K., Akira S. 2001; Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166:5688–5694 [CrossRef]
    [Google Scholar]
  22. Kalter D. C., Nakamura M., Turpin J. A., Baca L. M., Hoover D. L., Dieffenbach C., Ralph P., Gendelman H. E., Meltzer M. S. 1991; Enhanced HIV replication in macrophage colony-stimulating factor-treated monocytes. J Immunol 146:298–306
    [Google Scholar]
  23. Kawai T., Adachi O., Ogawa T., Takeda K., Akira S. 1999; Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115–122 [CrossRef]
    [Google Scholar]
  24. Kawamura I., Mitsuyama M., Nomoto K. 1990; Enhanced protection of cyclophosphamide-treated mice against infection with Pseudomonas aeruginosa after treatment with Z-100, a polysaccharide-rich extract from Mycobacterium tuberculosis Aoyama B. Immunopharmacol Immunotoxicol 12:331–343 [CrossRef]
    [Google Scholar]
  25. Keesler G. A., Bray J., Hunt J. 8 other authors 1998; Purification and activation of recombinant p38 isoforms α , β , γ , and δ . Protein Expr Purif 14:221–228 [CrossRef]
    [Google Scholar]
  26. Kelly M. D., Naif H. M., Adams S. L., Cunningham A. L., Lloyd A. R. 1998; Dichotomous effects of β -chemokines on HIV replication in monocytes and monocyte-derived macrophages. J Immunol 160:3091–3095
    [Google Scholar]
  27. Kobatake H., Suekane T., Murakami Y., Niwa S., Okahira A., Kushida H. 1981; Studies on hot water extract of Mycobacterium tuberculosis . I. Structural analyses of polysaccharides. Yakugaku Zasshi 101:713–722
    [Google Scholar]
  28. Kobayashi M., Nakajima N., Pollard R. B., Suzuki F. 1995; Tumor immunotherapeutic lipid-arabinomannan extracted from Mycobacterium tuberculosis (Z-100) induces the production of IL-12. In Abstracts of the 86th Annual Meeting of the American Association for Cancer Research Toronto:p– 467
    [Google Scholar]
  29. Kobayashi M., Pollard R. B., Suzuki F. 1997; Inhibition of pulmonary metastasis by Z-100, an immunomodulatory lipid-arabinomannan extracted from Mycobacterium tuberculosis , in mice inoculated with B16 melanoma. Anticancer Drugs 8:156–163 [CrossRef]
    [Google Scholar]
  30. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. 1987; Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236:819–822 [CrossRef]
    [Google Scholar]
  31. Kumar S., McDonnell P. C., Gum R. J., Hand A. T., Lee J. C., Young P. R. 1997; Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235:533–538 [CrossRef]
    [Google Scholar]
  32. Lee J. C., Young P. R. 1996; Role of CSB/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. J Leukoc Biol 59:152–157
    [Google Scholar]
  33. Mancino G., Placido R., Bach S., Mariani F., Montesano C., Ercoli L., Zembala M., Colizzi V. 1997; Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells. J Infect Dis 175:1531–1535 [CrossRef]
    [Google Scholar]
  34. Maniatis T., Falvo J. V., Kim T. H., Kim T. K., Lin C. H., Parekh B. S., Wathelet M. G. 1998; Structure and function of the interferon- β enhanceosome. Cold Spring Harb Symp Quant Biol 63:609–620 [CrossRef]
    [Google Scholar]
  35. Mann D. L., Gartner S., Le Sane F., Buchow H., Popovic M. 1990; HIV-1 transmission and function of virus-infected monocytes/macrophages. J Immunol 144:2152–2158
    [Google Scholar]
  36. Masuda T., Planelles V., Krogstad P., Chen I. S. Y. 1995; Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol 69:6687–6696
    [Google Scholar]
  37. Meylan P. R. A., Guatelli J. C., Munis J. R., Richman D. D., Kornbluth R. S. 1993; Mechanisms for the inhibition of HIV replication by interferons- α , - β , and - γ , in primary human macrophages. Virology 193:138–148 [CrossRef]
    [Google Scholar]
  38. Moriuchi H., Moriuchi M., Combadiere C., Murphy P. M., Fauci A. S. 1996; CD8+ T-cell-derived soluble factor(s), but not β -chemokines RANTES, MIP-1 α , and MIP-1 β , suppress HIV-1 replication in monocyte/macrophages. Proc Natl Acad Sci U S A 93:15341–15345 [CrossRef]
    [Google Scholar]
  39. Natsuka S., Akira S., Nishio Y., Hashimoto S., Sugita T., Isshiki H., Kishimoto T. 1992; Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 79:460–466
    [Google Scholar]
  40. Oka H., Emori Y., Ohya O., Kobayashi N., Sasaki H., Tanaka Y., Hayashi Y., Nomoto K. 1999; An immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis , Z-100, restores the balance of Th1/Th2 cell responses in tumor bearing mice. Immunol Lett 70:109–117 [CrossRef]
    [Google Scholar]
  41. Oka H., Shiraishi Y., Sasaki H., Yoshinaga K., Emori Y., Takei M. 2003; Antimetastatic effect of an immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis strain Aoyama B, Z-100, through the production of interleukin-12. Biol Pharm Bull 26:1336–1341 [CrossRef]
    [Google Scholar]
  42. Ono K., Han J. 2000; The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13 [CrossRef]
    [Google Scholar]
  43. Pauza C. D., Galindo J., Richman D. D. 1988; Human immunodeficiency virus infection of monoblastoid cells: cellular differentiation determines the pattern of virus replication. J Virol 62:3558–3564
    [Google Scholar]
  44. Sasaki H., Schmitt D., Hayashi Y., Pollard R. B., Suzuki F. 1993; Antitumor mechanisms of Z-100, an immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis : the importance of lymphocytes infiltrated into tumor sites. Nat Immun 12:104–112
    [Google Scholar]
  45. Sasaki H., Kobayashi M., Emori Y., Ohya O., Hayashi Y., Nomoto K. 1997; Z-100, a polysaccharide-rich preparation extracted from the human type Mycobacterium tuberculosis , improves the resistance of Meth-A tumor-bearing mice to endogenous septic infection. Biotherapy 10:139–143 [CrossRef]
    [Google Scholar]
  46. Sasaki H., Kobayashi M., Pollard R. B., Suzuki F. 2001; Effects of Z-100, a Mycobacterium-tuberculosis -derived arabinomannan, on the LP-BM5 murine leukemia virus infection in mice. Pathobiology 69:96–103 [CrossRef]
    [Google Scholar]
  47. Smith P. D., Fox C. H., Masur H., Winter H. S., Alling D. W. 1994; Quantitative analysis of mononuclear cells expressing human immunodeficiency virus type 1 RNA in esophageal mucosa. J Exp Med 180:1541–1546 [CrossRef]
    [Google Scholar]
  48. Stephens J. C., Reich D. E., Goldstein D. B. 36 other authors 1998; Dating the origin of the CCR5 32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62:1507–1515 [CrossRef]
    [Google Scholar]
  49. Suzuki F., Brutkiewicz R. R., Pollard R. B. 1986; Importance of Lyt 1+ T-cells in the antitumor activity of an immunomodulator, SSM, extracted from human-type Tubercle bacilli. J Natl Cancer Inst 77:441–447
    [Google Scholar]
  50. Tesmer V. M., Rajadhyaksha A., Babin J., Bina M. 1993; NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90:7298–7302 [CrossRef]
    [Google Scholar]
  51. Tissot C., Mechti N. 1995; Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem 270:14891–14898 [CrossRef]
    [Google Scholar]
  52. van't Wout A. B., Kootstra N. A., Mulder-Kampinga G. A. 7 other authors 1994; Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest 94:2060–2067 [CrossRef]
    [Google Scholar]
  53. Verani A., Scarlatti G., Comar M., Tresoldi E., Polo S., Giacca M., Lusso P., Siccardi A. G., Vercelli D. 1997; C–C chemokines released by lipopolysaccharide (LPS)-stimulated human macrophages suppress HIV-1 infection in both macrophages and T cells. J Exp Med 185:805–816 [CrossRef]
    [Google Scholar]
  54. Vidal V. F., Castéran N., Riendeau C. J., Kornfeld H., Darcissac E. C., Capron A., Bahr G. M. 2001; Macrophage stimulation with Murabutide, an HIV-suppressive muramyl peptide derivative, selectively activates extracellular signal-regulated kinases 1 and 2, C/EBP β and STAT1: role of CD14 and Toll-like receptors 2 and 4. Eur J Immunol 31:1962–1971 [CrossRef]
    [Google Scholar]
  55. Wang X. S., Diener K., Manthey C. L. 10 other authors 1997; Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 272:23668–23674 [CrossRef]
    [Google Scholar]
  56. Weiden M., Tanaka N., Qiao Y. 14 other authors 2000; Differentiation of monocytes to macrophages switches the Mycobacterium tuberculosis effect on HIV-1 replication from stimulation to inhibition: modulation of interferon response and CCAAT/enhancer binding protein β expression. J Immunol 165:2028–2039 [CrossRef]
    [Google Scholar]
  57. Yee J. K., Friedmann T., Burns J. C. 1994; Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43:99–112
    [Google Scholar]
  58. Zybarth G., Reiling N., Schmidtmayerova H., Sherry B., Bukrinski M. 1999; Activation-induced resistance of human macrophages to HIV-1 infection in vitro. J Immunol 162:400–406
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80046-0
Loading
/content/journal/jgv/10.1099/vir.0.80046-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error