1887

Abstract

Glycoprotein B (gB) is the most conserved glycoprotein of herpesviruses and plays important roles in virus infectivity. Two intervening heptad repeat (HR) sequences were found in the C-terminal half of all herpesvirus gBs analysed. A synthetic peptide derived from the HR region (aa 477–510) of bovine herpesvirus type 1 (BoHV-1) gB was studied for its ability to inhibit virus replication. The peptide interfered with cell-to-cell spread and consistently inhibited replication of BoHV-1, with a 50 % effective concentration value (EC) of 5 μM. Inhibition of replication was obtained not only with herpesviruses including pseudorabies virus and herpes simplex virus type 1 but also partly with Newcastle disease virus. Possible mechanisms of membrane fusion inhibition by the peptide are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80051-0
2004-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852131.html?itemId=/content/journal/jgv/10.1099/vir.0.80051-0&mimeType=html&fmt=ahah

References

  1. Asano K., Asano A. 1985; Why is the specific amino acid sequence of glycoprotein required for the membrane fusion reaction between envelope of HVJ (Sendai virus) and target cell membrane?. Biochem Int 10:115–122
    [Google Scholar]
  2. Baghian A., Jaynes J., Enright F., Kousoulas K. G. 1997; An amphipathic α -helical peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18:177–183 [CrossRef]
    [Google Scholar]
  3. Bold S., Ohlin M., Garten W., Radsak K. 1996; Structural domains involved in human cytomegalovirus glycoprotein B-mediated cell fusion. J Gen Virol 77:2297–2302 [CrossRef]
    [Google Scholar]
  4. Chambers P., Pringle C. R., Easton A. J. 1990; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol 71:3075–3080 [CrossRef]
    [Google Scholar]
  5. Chen L., Gorman J. J., McKimm-Breschkin J., Lawrence L. J., Tulloch P. A., Smith B. J., Colman P. M., Lawrence M. C. 2001; The structure of the fusion protein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9:255–266 [CrossRef]
    [Google Scholar]
  6. DeLuca N., Bzik D. J., Bond V. C., Person S., Snipes W. 1982; Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7). Virology 122:411–423 [CrossRef]
    [Google Scholar]
  7. Fitzpatrick D. R., Zamb T. J., Babiuk L. A. 1990; Expression of bovine herpesvirus type 1 glycoprotein gI in transfected bovine cells induces spontaneous cell fusion. J Gen Virol 71:1215–1219 [CrossRef]
    [Google Scholar]
  8. Freed E. O., Myers D. J., Risser R. 1989; Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 63:4670–4675
    [Google Scholar]
  9. Gallaher W. R. 1987; Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328 [CrossRef]
    [Google Scholar]
  10. Gething M. J., Doms R. W., York D., White J. 1986; Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102:11–23 [CrossRef]
    [Google Scholar]
  11. Honma M., Ohuchi M. 1973; Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol 12:1457–1465
    [Google Scholar]
  12. Kilby J. M., Hopkins S., Venetta T. M. 12 other authors 1998; Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4:1302–1307 [CrossRef]
    [Google Scholar]
  13. Kliger Y., Gallo S. A., Peisajovich S. G., Munoz-Barroso I., Avkin S., Blumenthal R., Shai Y. 2001; Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 276:1391–1397 [CrossRef]
    [Google Scholar]
  14. Klupp B. G., Nixdorf R., Mettenleiter T. C. 2000; Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol 74:6760–6768 [CrossRef]
    [Google Scholar]
  15. Lambert D. M., Barney S., Lambert A. L. 7 other authors; 1996; Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A 93:2186–2191 [CrossRef]
    [Google Scholar]
  16. Lazarowitz S. G., Compans R. W., Choppin P. W. 1973; Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA. Virology 52:199–212 [CrossRef]
    [Google Scholar]
  17. Levy-Mintz P., Kielian M. 1991; Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J Virol 65:4292–4300
    [Google Scholar]
  18. Li Y., Van Drunnen Little-van den Hurk S., Liang X., Babiuk L. A. 1997; Functional analysis of the transmembrane anchor region of bovine herpesvirus 1 glycoprotein gB. Virology 228:39–54 [CrossRef]
    [Google Scholar]
  19. Lobigs M., Garoff H. 1990; Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. J Virol 64:1233–1240
    [Google Scholar]
  20. Marshall R. L., Rodriguez L. L., Letchworth G. J. III 1986; Characterization of envelope proteins of infectious bovine rhinotracheitis virus (bovine herpesvirus 1) by biochemical and immunological methods. J Virol 57:745–753
    [Google Scholar]
  21. Mettenleiter T. C., Zsak L., Zuckermann F., Sugg N., Kern H., Ben-Porat T. 1990; Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol 64:278–286
    [Google Scholar]
  22. Navarro D., Paz P., Tugizov S., Topp K., La Vail J., Pereira L. 1993; Glycoprotein B of human cytomegalovirus promotes virion penetration into cells, transmission of infection from cell to cell, and fusion of infected cells. Virology 197:143–158 [CrossRef]
    [Google Scholar]
  23. Okazaki K., Honda E., Minetoma T., Kumagai T. 1986; Mechanisms of neutralization by monoclonal antibodies to different antigenic sites on the bovine herpesvirus type 1 glycoproteins. Virology 150:260–264 [CrossRef]
    [Google Scholar]
  24. Okazaki K., Matsuzaki T., Sugahara Y. 8 other authors 1991; BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface. Virology 181:666–670 [CrossRef]
    [Google Scholar]
  25. Rapaport D., Ovadia M., Shai Y. 1995; A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus–cell fusion: an emerging similarity with functional domains of other viruses. EMBO J 14:5524–5531
    [Google Scholar]
  26. Rauh I., Mettenleiter T. C. 1991; Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 65:5348–5356
    [Google Scholar]
  27. Rimsky L. T., Shugars D. C., Matthews T. J. 1998; Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 72:986–993
    [Google Scholar]
  28. San Roman K., Villar E., Munoz-Barroso I. 2002; Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. Int J Biochem Cell Biol 34:1207–1220 [CrossRef]
    [Google Scholar]
  29. Spear P. G., Eisenberg R. J., Cohen G. H. 2000; Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275:1–8 [CrossRef]
    [Google Scholar]
  30. Turner A., Bruun B., Minson T., Browne H. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–875
    [Google Scholar]
  31. van Drunen Little-van den Hurk S., van den Hurk J. V., Gilchrist J. E., Misra V., Babiuk L. A. 1984; Interactions of monoclonal antibodies and bovine herpesvirus 1 (BHV-1) glycoproteins: characterization of their biochemical and immunological properties. Virology 135:466–479 [CrossRef]
    [Google Scholar]
  32. van Drunen Little-van den Hurk S., Parkker M. D., Fitzpatrick D. R., van den Hurk J., Campos M., Babiuk L. A., Zamb T. J. 1992; Structural, functional, and immunological characterization of bovine herpesvirus-1 glycoprotein gI expressed by recombinant baculovirus. Virology 190:378–392 [CrossRef]
    [Google Scholar]
  33. Wanas E., Efler S., Ghosh K., Ghosh H. P. 1999; Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus. J Gen Virol 80:3189–3198
    [Google Scholar]
  34. Whitbeck J. C., Bello L. J., Lawrence W. C. 1988; Comparison of the bovine herpesvirus 1 gI gene and the herpes simplex virus type 1 gB gene. J Virol 62:3319–3327
    [Google Scholar]
  35. Wild C., Oas T., McDanal C., Bolognesi D., Matthews T. 1992; A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A 89:10537–10541 [CrossRef]
    [Google Scholar]
  36. Wild C., Shugars D., Greenwell T., McDanal C., Matthews T. 1994; Peptides corresponding to a predictive alpha helical domain of HIV-1gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 91:9770–9774 [CrossRef]
    [Google Scholar]
  37. Wild T. F., Buckland R. 1997; Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. J Gen Virol 78:107–111
    [Google Scholar]
  38. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63:52–58
    [Google Scholar]
  39. Young J. K., Hicks R. P., Wright G. E., Morrison T. G. 1997; Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology 238:291–304 [CrossRef]
    [Google Scholar]
  40. Young J. K., Li D., Abramowitz M. C., Morrison T. G. 1999; Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J Virology 73:5945–5956
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80051-0
Loading
/content/journal/jgv/10.1099/vir.0.80051-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error