1887

Abstract

Dendritic cells (DCs) have been used successfully to induce CD8 T cells that control virus infections and growth of tumours. The efficacy of DC-mediated immunization for the control of neurotropic (BDV) in mice was evaluated. Certain strains of mice only rarely develop spontaneous neurological disease, despite massive BDV replication in the brain. Resistance to disease is due to immunological ignorance toward BDV antigen in the central nervous system. Ignorance in mice can be broken by immunization with DCs coated with TELEISSI, a peptide derived from the N protein of BDV, which represents the immunodominant cytotoxic T lymphocyte epitope in H-2 mice. Immunization with TELEISSI-coated DCs further induced solid protective immunity against intravenous challenge with a recombinant vaccinia virus expressing BDV-N. Interestingly, however, this immunization scheme induced only moderate protection against intracerebral challenge with BDV, suggesting that immune memory raised against a shared antigen may be sufficient to control a peripherally replicating virus, but not a highly neurotropic virus that is able to avoid activation of T cells. This difference might be due to the lack of BDV-specific CD4 T cells and/or inefficient reactivation of DC-primed, BDV-specific CD8 T cells by the locally restricted BDV infection. Thus, a successful vaccine against persistent viruses with strong neurotropism should probably induce antiviral CD8 (as well as CD4) T-cell responses and should favour the accumulation of virus-specific memory T cells in cervical lymph nodes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80115-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852379.html?itemId=/content/journal/jgv/10.1099/vir.0.80115-0&mimeType=html&fmt=ahah

References

  1. Bartholdy C., Christensen J. P., Wodarz D., Thomsen A. R. 2000; Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. J Virol 74:10304–10311 [CrossRef]
    [Google Scholar]
  2. Batra A., Planz O., Bilzer T., Stitz L. 2003; Precursors of Borna disease virus-specific T cells in secondary lymphatic tissue of experimentally infected rats. J Neurovirol 9:325–335 [CrossRef]
    [Google Scholar]
  3. Bilzer T., Planz O., Lipkin W. I., Stitz L. 1995; Presence of CD4+ and CD8+ T cells and expression of MHC class I and MHC class II antigen in horses with Borna disease virus-induced encephalitis. Brain Pathol 5:223–230 [CrossRef]
    [Google Scholar]
  4. Binder G. K., Griffin D. E. 2001; Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306 [CrossRef]
    [Google Scholar]
  5. Binder D., Kundig T. M. 1991; Antiviral protection by CD8+ versus CD4+ T cells. CD8+ T cells correlating with cytotoxic activity in vitro are more efficient in antivaccinia virus protection than CD4-dependent IL. J Immunol 146:4301–4307
    [Google Scholar]
  6. Briese T., Lipkin W. I., de la Torre J. C. 1995; Molecular biology of Borna disease virus. Curr Top Microbiol Immunol 190:1–16
    [Google Scholar]
  7. Doherty P. C., Allan J. E., Lynch F., Ceredig R. 1990; Dissection of an inflammatory process induced by CD8+ T cells. Immunol Today 11:55–59 [CrossRef]
    [Google Scholar]
  8. Friedl G., Hofer M., Auber B., Sauder C., Hausmann J., Staeheli P., Pagenstecher A. 2004; Borna disease virus multiplication in mouse organotypic slice cultures is site-specifically inhibited by gamma interferon but not by interleukin-12. J Virol 78:1212–1218 [CrossRef]
    [Google Scholar]
  9. Gosztonyi G., Ludwig H. 1995; Borna disease – neuropathology and pathogenesis. Curr Top Microbiol Immunol 190:39–73
    [Google Scholar]
  10. Gould K. G., Scotney H., Brownlee G. G. 1991; Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin. J Virol 65:5401–5409
    [Google Scholar]
  11. Haas B., Becht H., Rott R. 1986; Purification and properties of an intranuclear virus-specific antigen from tissue infected with Borna disease virus. J Gen Virol 67:235–241 [CrossRef]
    [Google Scholar]
  12. Hallensleben W., Schwemmle M., Hausmann J., Stitz L., Volk B., Pagenstecher A., Staeheli P. 1998; Borna disease virus-induced neurological disorder in mice: infection of neonates results in immunopathology. J Virol 72:4379–4386
    [Google Scholar]
  13. Hausmann J., Hallensleben W., de la Torre J. C., Pagenstecher A., Zimmermann C., Pircher H., Staeheli P. 1999; T cell ignorance in mice to Borna disease virus can be overcome by peripheral expression of the viral nucleoprotein. Proc Natl Acad Sci U S A 96:9769–9774 [CrossRef]
    [Google Scholar]
  14. Herzog S., Rott R. 1980; Replication of Borna disease virus in cell cultures. Med Microbiol Immunol 168:153–158 [CrossRef]
    [Google Scholar]
  15. Huang S., Hendriks W., Althage A., Hemmi S., Bluethmann H., Kamijo R., Vilcek J., Zinkernagel R. M., Aguet M. 1993; Immune response in mice that lack the interferon-gamma receptor. Science 259:1742–1745 [CrossRef]
    [Google Scholar]
  16. Karupiah G., Blanden R. V. 1990; Anti-asialo-GM1 inhibits vaccinia virus infection of murine ovaries: asialo-GM1 as an additional virus receptor?. Immunol Cell Biol 68:343–346 [CrossRef]
    [Google Scholar]
  17. Lewis A. J., Whitton J. L., Hatalski C. G., Weissenböck H., Lipkin W. I. 1999; Effect of immune priming on Borna disease. J Virol 73:2541–2546
    [Google Scholar]
  18. Ludewig B., Ehl S., Karrer U., Odermatt B., Hengartner H., Zinkernagel R. M. 1998; Dendritic cells efficiently induce protective antiviral immunity. J Virol 72:3812–3818
    [Google Scholar]
  19. Ludewig B., Oehen S., Barchiesi F., Schwendener R. A., Hengartner H., Zinkernagel R. M. 1999; Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J Immunol 163:1839–1844
    [Google Scholar]
  20. Ludewig B., McCoy K., Pericin M. 7 other authors 2001; Rapid peptide turnover and inefficient presentation of exogenous antigen critically limit the activation of self-reactive CTL by dendritic cells. J Immunol 166:3678–3687 [CrossRef]
    [Google Scholar]
  21. Ludwig H., Bode L. 2000; Borna disease virus: new aspects on infection, disease, diagnosis and epidemiology. Rev Sci Tech 19:259–288
    [Google Scholar]
  22. Ludwig H., Bode L., Gosztonyi G. 1988; Borna disease: a persistent virus infection of the central nervous system. Prog Med Virol 35:107–151
    [Google Scholar]
  23. Ludwig H., Furuya K., Bode L., Klein N., Dürrwald R., Lee D. S. 1993; Biology and neurobiology of Borna disease viruses (BDV), defined by antibodies, neutralizability and their pathogenic potential. Arch Virol Suppl 7:111–133
    [Google Scholar]
  24. Lutz M. B., Kukutsch N., Ogilvie A. L. J., Rößner S., Koch F., Romani N., Schuler G. 1999; An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92 [CrossRef]
    [Google Scholar]
  25. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol 49:857–864
    [Google Scholar]
  26. Marten N. W., Stohlman S. A., Zhou J., Bergmann C. C. 2003; Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J Virol 77:2775–2778 [CrossRef]
    [Google Scholar]
  27. Moss B. 1996; Poxviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp  2637–2671 Edited by Fields B. N., Knipe D. M., Howley P. M. New York: Lippincott-Raven;
    [Google Scholar]
  28. Muller U., Steinhoff U., Reis L. F., Hemmi S., Pavlovic J., Zinkernagel R. M., Aguet M. 1994; Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921 [CrossRef]
    [Google Scholar]
  29. Nöske K., Bilzer T., Planz O., Stitz L. 1998; Virus-specific CD4+ T cells eliminate Borna disease virus from the brain via induction of cytotoxic CD8+ T cells. J Virol 72:4387–4395
    [Google Scholar]
  30. Ortmann D., Hausmann J., Beuschlein F., Schmenger K., Stahl M., Geissler M., Reincke M. 2004; StAR-directed immunotherapy protects against tumor growth of StAR expressing Sp2-0 cells in a rodent adrenocortical carcinoma model. Endocrinology 145:1760–1766 [CrossRef]
    [Google Scholar]
  31. Planz O., Rziha H. J., Stitz L. 2003; Genetic relationship of Borna disease virus isolates. Virus Genes 26:25–30 [CrossRef]
    [Google Scholar]
  32. Rauer M., Götz J., Schuppli D., Staeheli P., Hausmann J. 2004; Transgenic mice expressing the nucleoprotein of Borna disease virus in either neurons or astrocytes: decreased susceptibility to homotypic infection and disease. J Virol 78:3621–3632 [CrossRef]
    [Google Scholar]
  33. Richt J. A., Rott R. 2001; Borna disease virus: a mystery as an emerging zoonotic pathogen. Vet J 161:24–40 [CrossRef]
    [Google Scholar]
  34. Rodriguez M., Zoecklein L. J., Howe C. L., Pavelko K. D., Gamez J. D., Nakane S., Papke L. M. 2003; Gamma interferon is critical for neuronal viral clearance and protection in a susceptible mouse strain following early intracranial Theiler's murine encephalomyelitis virus infection. J Virol 77:12252–12265 [CrossRef]
    [Google Scholar]
  35. Rott R., Becht H. 1995; Natural and experimental Borna disease in animals. Curr Top Microbiol Immunol 190:17–30
    [Google Scholar]
  36. Sauder C., Wolfer D. P., Lipp H.-P., Staeheli P., Hausmann J. 2001; Learning deficits in mice with persistent Borna disease virus infection of the CNS associated with elevated chemokine expression. Behav Brain Res 120:189–201 [CrossRef]
    [Google Scholar]
  37. Schamel K., Staeheli P., Hausmann J. 2001; Identification of the immunodominant H-2Kk-restricted cytotoxic T-cell epitope in the Borna disease virus nucleoprotein. J Virol 75:8579–8588 [CrossRef]
    [Google Scholar]
  38. Schneemann A., Schneider P. A., Lamb R. A., Lipkin W. I. 1995; The remarkable coding strategy of Borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology 210:1–8 [CrossRef]
    [Google Scholar]
  39. Sobbe M., Bilzer T., Gommel S., Nöske K., Planz O., Stitz L. 1997; Induction of degenerative brain lesions after adoptive transfer of brain lymphocytes from Borna disease virus-infected rats: presence of CD8+ T cells and perforin mRNA. J Virol 71:2400–2407
    [Google Scholar]
  40. Stitz L., Bilzer T., Planz O. 2002; The immunopathogenesis of Borna disease virus infection. Front Biosci 7:D541–D555 [CrossRef]
    [Google Scholar]
  41. Stohlman S. A., Bergmann C. C., Lin M. T., Cua D. J., Hinton D. R. 1998; CTL effector function within the central nervous system requires CD4+ T cells. J Immunol 160:2896–2904
    [Google Scholar]
  42. Tishon A., Lewicki H., Rall G., Von Herrath M., Oldstone M. B. A. 1995; An essential role for type 1 interferon-γ in terminating persistent viral infection. Virology 212:244–250 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80115-0
Loading
/content/journal/jgv/10.1099/vir.0.80115-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error