1887

Abstract

To determine the selection pressures faced by RNA viruses of plants, patterns of nonsynonymous ( ) and synonymous ( ) substitution in the capsid genes of 36 viruses with differing modes of transmission were analysed. This analysis provided strong evidence that the capsid proteins of vector-borne plant viruses are subject to greater purifying selection on amino acid change than those viruses transmitted by other routes and that virus–vector interactions impose greater selective constraints than those between virus and plant host. This could be explained by specific interactions between capsid proteins and cellular receptors in the insect vectors that are necessary for successful transmission. However, contrary to initial expectations based on phylogenetic relatedness, vector-borne plant viruses are subject to weaker selective constraints than vector-borne animal viruses. The results suggest that the greater complexity involved in the transmission of circulative animal viruses compared with non-circulative plant viruses results in more intense purifying selection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80134-0
2004-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir853149.html?itemId=/content/journal/jgv/10.1099/vir.0.80134-0&mimeType=html&fmt=ahah

References

  1. Anisimova M., Nielsen R., Yang Z. 2003; Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236
    [Google Scholar]
  2. Atreya P. L., Atreya C. D., Pirone T. P. 1991; Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc Natl Acad Sci U S A 88:7887–7891 [CrossRef]
    [Google Scholar]
  3. Atreya P. L., Lopez-Moya J.-J., Chu M., Atreya C. D., Pirone T. P. 1995; Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. J Gen Virol 76:265–270 [CrossRef]
    [Google Scholar]
  4. Bandla M. D., Campbell L. R., Ullman D. E., Sherwood J. L. 1998; Interaction of tomato spotted wilt virus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology 88:98–104 [CrossRef]
    [Google Scholar]
  5. Blanc S., Lopez-Moya J.-J., Wang R., Garcia-Lampasona S., Thornbury D. W., Pirone T. P. 1997; A specific interaction between coat protein and helper component correlates with aphid transmission of a Potyvirus . Virology 231:141–147 [CrossRef]
    [Google Scholar]
  6. Brault V., van den Heuvel J. F., Verbeek M. 7 other authors 1995; Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J 14:650–659
    [Google Scholar]
  7. Brault V., Bergdoll M., Mutterer J., Prasad V., Pfeffer S., Erdinger M., Richards K. E., Ziegler-Graff V. 2003; Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation and aphid transmission. J Virol 77:3247–3256 [CrossRef]
    [Google Scholar]
  8. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A. 2001; The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460 [CrossRef]
    [Google Scholar]
  9. Demler S. A., Rucker-Feeney D. G., Skaf J. S., de Zoeten G. A. 1997; Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J Gen Virol 78:511–523
    [Google Scholar]
  10. Domingo E., Holland J. J. 1997; RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178 [CrossRef]
    [Google Scholar]
  11. Eigen M. 1987; New concepts for dealing with the evolution of nucleic acids. Cold Spring Harb Symp Quant Biol 52:307–319 [CrossRef]
    [Google Scholar]
  12. Elena S. F. 2002; Restrictions to RNA virus adaptation: an experimental approach. Antonie Van Leeuwenhoek 81:135–142 [CrossRef]
    [Google Scholar]
  13. Gal-On A., Antignus Y., Rosner A., Raccah B. 1992; A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J Gen Virol 73:2183–2187 [CrossRef]
    [Google Scholar]
  14. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  15. Gaunt M. W., Sall A. A., de Lamballerie X., Falconar A. K., Dzhivanian T. I., Gould E. A. 2001; Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876
    [Google Scholar]
  16. Gray S. M., Banerjee N. 1999; Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63:128–148
    [Google Scholar]
  17. Harvey P. H., Pagel M. D. 1993 The Comparative Method in Evolutionary Biology Oxford: Oxford University Press;
    [Google Scholar]
  18. Holmes E. C. 2003a; Error thresholds and the constraints to RNA virus evolution. Trends Microbiol 11:543–546 [CrossRef]
    [Google Scholar]
  19. Holmes E. C. 2003b; Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77:11296–11298 [CrossRef]
    [Google Scholar]
  20. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165 [CrossRef]
    [Google Scholar]
  21. Jones C. T., Ma L., Burgner J. W., Groesch T. D., Post C. B., Kuhn R. J. 2003; Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77:7143–7149 [CrossRef]
    [Google Scholar]
  22. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  23. Langevin C., Jaaro H., Bressanelli S., Fainzilber M., Tuffereau C. 2002; Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem 277:37655–37662 [CrossRef]
    [Google Scholar]
  24. Lazarowitz S. G. 2001; Plant viruses. In Fundamental Virology . , 4th edn. pp  377–442 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott, Williams & Wilkins;
  25. Liu S., He X., Park G., Josefsson C., Perry K. L. 2002; A conserved capsid protein surface domain of cucumber mosaic virus is essential for efficient aphid vector transmission. J Virol 76:9756–9762 [CrossRef]
    [Google Scholar]
  26. Medeiros R. B., Ullman D. E., Sherwood J. L., German T. L. 2000; Immunoprecipitation of a 50-kDa protein: a candidate receptor component for tomato spotted wilt tospovirus ( Bunyaviridae ) in its main vector, Frankliniella occidentalis . Virus Res 67:109–118 [CrossRef]
    [Google Scholar]
  27. Moya A., Holmes E. C., González-Candelas F. 2004; The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2:279–288 [CrossRef]
    [Google Scholar]
  28. Novella I. S., Hershey C. L., Escarmis C., Domingo E., Holland J. J. 1999; Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J Mol Biol 287:459–465 [CrossRef]
    [Google Scholar]
  29. Perry K. L., Zhang L., Shintaku M. H., Palukaitis P. 1994; Mapping determinants in cucumber mosaic virus for transmission by Aphis gossypii . Virology 205:591–595 [CrossRef]
    [Google Scholar]
  30. Perry K. L., Zhang L., Palukaitis P. 1998; Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii . Virology 242:204–210 [CrossRef]
    [Google Scholar]
  31. Posada D. 2002; Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717 [CrossRef]
    [Google Scholar]
  32. Power A. G. 2000; Insect transmission of plant viruses: a constraint on virus variability. Curr Opin Plant Biol 3:336–340 [CrossRef]
    [Google Scholar]
  33. Power A. G., Flecker A. S. 2003; Virus specificity in disease systems: Are species redundant?. In The Importance of Species pp  330–346 Edited by Levin S. A., Kareiva P. Princeton: Princeton University Press;
    [Google Scholar]
  34. Sanz M. A., Rejas M. T., Carrasco L. 2003; Individual expression of sindbis virus glycoproteins. E1 alone promotes cell fusion. Virology 305:463–472 [CrossRef]
    [Google Scholar]
  35. Sawyer S. 1989; Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538
    [Google Scholar]
  36. Scott T. W., Weaver S. C., Mallampalli V. L. 1994; Evolution of mosquito-borne viruses. In Evolutionary Biology of Viruses pp  293–324 Edited by Morse S. S. NY: Raven Press;
    [Google Scholar]
  37. Shintaku M. H., Zhang L., Palukaitis P. 1992; A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751–757 [CrossRef]
    [Google Scholar]
  38. Swofford D. L. 2002; paup*. Phylogenetics Analysis Using Parsimony (*and other methods). Version 4: Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  39. Syller J. 2002; Umbraviruses – the unique plant viruses that do not encode a capsid protein. Acta Microbiol Pol 51:99–113
    [Google Scholar]
  40. Tamada T., Schmitt C., Saito M., Guilley H., Richards K., Jonard G. 1996; High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae . J Gen Virol 77:1359–1367 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  42. Turner P. E., Elena S. F. 2000; Cost of host radiation in an RNA virus. Genetics 156:1465–1470
    [Google Scholar]
  43. Weaver S. C., Brault A. C., Kang W., Holland J. J. 1999; Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J Virol 73:4316–4326
    [Google Scholar]
  44. Woelk C. H., Holmes E. C. 2002; Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol 19:2333–2336 [CrossRef]
    [Google Scholar]
  45. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556
    [Google Scholar]
  46. Yang Z., Nielsen R., Goldman N., Pedersen A.-M. K. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80134-0
Loading
/content/journal/jgv/10.1099/vir.0.80134-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error