1887

Abstract

Infection of mice with murine gammaherpesvirus 68 is characterized by a marked transient expansion of latently infected splenic germinal centre (GC) B cells, which is followed by lower levels of persistent infection in GC and memory B cells. Virus transcription within GC B cells is restricted to a number of latency-associated open reading frames, including . This gene encodes a structurally unique protein of unknown function, which has been shown to be essential for the transient peak of virus latency during the establishment of latent infection in the spleen. This study shows that upon infection of mice with M2-defective viruses, at 14 days post-infection during the establishment of latency in the spleen, there was a reduction in the number of latently infected follicles when compared with wild-type virus. However, the mean number of latently infected cells within each follicle was equivalent between wild-type and M2-defective viruses. Late in infection, disruption of resulted in sustained and abnormally high levels of virus persistence in splenic GC B cells but not memory B cells. These data indicate that during the establishment of latency in the spleen, the gene product is required for efficient colonization of splenic follicles but is dispensable for the expansion of latently infected GC B cells and that M2 might be a critical modulator of B-cell function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80138-0
2004-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir852789.html?itemId=/content/journal/jgv/10.1099/vir.0.80138-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [CrossRef]
    [Google Scholar]
  2. Adler H., Messerle M., Koszinowski U. H. 2001; Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. J Virol 75:5692–5696 [CrossRef]
    [Google Scholar]
  3. Ahn J. W., Powell K. L., Kellam P., Alber D. G. 2002; Gammaherpesvirus lytic gene expression as characterized by DNA array. J Virol 76:6244–6256 [CrossRef]
    [Google Scholar]
  4. Ballestas M. E., Chatis P. A., Kaye K. M. 1999; Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644 [CrossRef]
    [Google Scholar]
  5. Bonnefoix T., Bonnefoix P., Callanan M., Verdiel P., Sotto J. J. 2001; Graphical representation of a generalized linear model-based statistical test estimating the fit of the single-hit Poisson model to limiting dilution assays. J Immunol 167:5725–5730 [CrossRef]
    [Google Scholar]
  6. Bowden R. J., Simas J. P., Davis A. J., Efstathiou S. 1997; Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J Gen Virol 78:1675–1687
    [Google Scholar]
  7. Bridgeman A., Stevenson P. G., Simas J. P., Efstathiou S. 2001; A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194:301–312 [CrossRef]
    [Google Scholar]
  8. Collins C. M., Medveczky P. G. 2002; Genetic requirements for the episomal maintenance of oncogenic herpesvirus genomes. Adv Cancer Res 84:155–174
    [Google Scholar]
  9. Ebrahimi B., Dutia B. M., Roberts K. L., Garcia-Ramirez J. J., Dickinson P., Stewart J. P., Ghazal P., Roy D. J., Nash A. A. 2003; Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109 [CrossRef]
    [Google Scholar]
  10. Efstathiou S., Ho Y. M., Minson A. C. 1990; Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71:1355–1364 [CrossRef]
    [Google Scholar]
  11. Flano E., Kim I. J., Woodland D. L., Blackman M. A. 2002a; Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196:1363–1372 [CrossRef]
    [Google Scholar]
  12. Flano E., Woodland D. L., Blackman M. A. 2002b; A mouse model for infectious mononucleosis. Immunol Res 25:201–217 [CrossRef]
    [Google Scholar]
  13. Flano E., Kim I. J., Moore J., Woodland D. L., Blackman M. A. 2003; Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. J Immunol 170:3828–3834 [CrossRef]
    [Google Scholar]
  14. Fowler P., Marques S., Simas J. P., Efstathiou S. 2003; ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84:3405–3416 [CrossRef]
    [Google Scholar]
  15. Husain S. M., Usherwood E. J., Dyson H., Coleclough C., Coppola M. A., Woodland D. L., Blackman M. A., Stewart J. P., Sample J. T. 1999; Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8+ T lymphocytes. Proc Natl Acad Sci U S A 96:7508–7513 [CrossRef]
    [Google Scholar]
  16. Jacoby M. A., Virgin H. W. 4th, Speck S. H. 2002; Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol 76:1790–1801 [CrossRef]
    [Google Scholar]
  17. Liu S., Pavlova I. V., Virgin H. W. 4th, Speck S. H. 2000; Characterization of gammaherpesvirus 68 gene 50 transcription. J Virol 74:2029–2037 [CrossRef]
    [Google Scholar]
  18. Macrae A. I., Usherwood E. J., Husain S. M. 7 other authors 2003; Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol 77:9700–9709 [CrossRef]
    [Google Scholar]
  19. Marques S., Efstathiou S., Smith K. G., Haury M., Simas J. P. 2003; Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77:7308–7318 [CrossRef]
    [Google Scholar]
  20. Messerle M., Crnkovic I., Hammerschmidt W., Ziegler H., Koszinowski U. H. 1997; Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94:14759–14763 [CrossRef]
    [Google Scholar]
  21. Moorman N. J., Willer D. O., Speck S. H. 2003; The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77:10295–10303 [CrossRef]
    [Google Scholar]
  22. Nash A. A., Dutia B. M., Stewart J. P., Davison A. J. 2001; Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356:569–579 [CrossRef]
    [Google Scholar]
  23. Simas J. P., Efstathiou S. 1998; Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6:276–282 [CrossRef]
    [Google Scholar]
  24. Simas J. P., Bowden R. J., Paige V., Efstathiou S. 1998; Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo . J Gen Virol 79:149–153
    [Google Scholar]
  25. Simas J. P., Swann D., Bowden R., Efstathiou S. 1999; Analysis of murine gammaherpesvirus-68 transcription during lytic and latent infection. J Gen Virol 80:75–82
    [Google Scholar]
  26. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3:733–740
    [Google Scholar]
  27. Stewart J. P., Janjua N. J., Pepper S. D., Bennion G., Mackett M., Allen T., Nash A. A., Arrand J. R. 1996; Identification and characterization of murine gammaherpesvirus 68 gp150: a virion membrane glycoprotein. J Virol 70:3528–3535
    [Google Scholar]
  28. Thorley-Lawson D. A. 2001; Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82 [CrossRef]
    [Google Scholar]
  29. Tripp R. A., Hamilton-Easton A. M., Cardin R. D., Nguyen P., Behm F. G., Woodland D. L., Doherty P. C., Blackman M. A. 1997; Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen?. J Exp Med 185:1641–1650 [CrossRef]
    [Google Scholar]
  30. Usherwood E. J., Roy D. J., Ward K., Surman S. L., Dutia B. M., Blackman M. A., Stewart J. P., Woodland D. L. 2000; Control of gammaherpesvirus latency by latent antigen-specific CD8+ T cells. J Exp Med 192:943–952 [CrossRef]
    [Google Scholar]
  31. Usherwood E. J., Ward K. A., Blackman M. A., Stewart J. P., Woodland D. L. 2001; Latent antigen vaccination in a model gammaherpesvirus infection. J Virol 75:8283–8288 [CrossRef]
    [Google Scholar]
  32. Virgin H. W. 4th, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904
    [Google Scholar]
  33. Virgin H. W. 4th, Presti R. M., Li X. Y., Liu C., Speck S. H. 1999; Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73:2321–2332
    [Google Scholar]
  34. Willer D. O., Speck S. H. 2003; Long-term latent murine gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo . J Virol 77:8310–8321 [CrossRef]
    [Google Scholar]
  35. Wu T. T., Usherwood E. J., Stewart J. P., Nash A. A., Sun R. 2000; Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol 74:3659–3667 [CrossRef]
    [Google Scholar]
  36. Wu T. T., Tong L., Rickabaugh T., Speck S., Sun R. 2001; Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75:9262–9273 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80138-0
Loading
/content/journal/jgv/10.1099/vir.0.80138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error