1887

Abstract

There is accumulating evidence from bioinformatic studies that hepatitis C virus (HCV) possesses extensive RNA secondary structure in the core and NS5B-encoding regions of the genome. Recent functional studies have defined one such stem–loop structure in the NS5B region as an essential -acting replication element (CRE). A program was developed (_) that analyses multiple rna-folding patterns predicted by to determine the evolutionary conservation of predicted stem–loop structures and, by a new method, to analyse frequencies of covariant sites in predicted RNA folding between HCV genotypes. These novel bioinformatic methods have been combined with enzymic mapping of RNA transcripts from the core and NS5B regions to precisely delineate the RNA structures that are present in these genomic regions. Together, these methods predict the existence of multiple, often juxtaposed stem–loops that are found in all HCV genotypes throughout both regions, as well as several strikingly conserved single-stranded regions, one of which coincides with a region of the genome to which ribosomal access is required for translation initiation. Despite the existence of marked sequence conservation between genotypes in the HCV CRE and single-stranded regions, there was no evidence for comparable suppression of variability at either synonymous or non-synonymous sites in the other predicted stem–loop structures. The configuration and genetic variability of many of these other NS5B and core structures is perhaps more consistent with their involvement in genome-scale ordered RNA structure, a structural configuration of the genomes of many positive-stranded RNA viruses that is associated with host persistence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80141-0
2004-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/10/vir853037.html?itemId=/content/journal/jgv/10.1099/vir.0.80141-0&mimeType=html&fmt=ahah

References

  1. Barrera I., Schuppli D., Sogo J. M., Weber H. 1993; Different mechanisms of recognition of bacteriophage Q β plus and minus strand RNAs by Q β replicase. J Mol Biol 232:512–521 [CrossRef]
    [Google Scholar]
  2. Boulant S., Becchi M., Penin F., Lavergne J.-P. 2003; Unusual multiple recoding events leading to alternative forms of hepatitis C virus core protein from genotype 1b. J Biol Chem 278:45785–45792 [CrossRef]
    [Google Scholar]
  3. Fletcher S. P., Ali I. K., Kaminski A., Digard P., Jackson R. J. 2002; The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA 8:1558–1571
    [Google Scholar]
  4. Giedroc D. P., Theimer C. A., Nixon P. L. 2000; Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol 298:167–185 [CrossRef]
    [Google Scholar]
  5. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J. 2000; Identification of a cis -acting replication element within the poliovirus coding region. J Virol 74:4590–4600 [CrossRef]
    [Google Scholar]
  6. Han J. H., Houghton M. 1992; Group specific sequences and conserved secondary structures at the 3′ end of HCV genome and its implication for viral replication. Nucleic Acids Res 20:3520 [CrossRef]
    [Google Scholar]
  7. Hofacker I. L., Fekete M., Flamm C., Huynen M. A., Rauscher S., Stolorz P. E., Stadler P. F. 1998; Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res 26:3825–3836 [CrossRef]
    [Google Scholar]
  8. Honda M., Brown E. A., Lemon S. M. 1996a; Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968
    [Google Scholar]
  9. Honda M., Ping L.-H., Rijnbrand R. C. A., Amphlett E., Clarke B., Rowlands D., Lemon S. M. 1996b; Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222:31–42 [CrossRef]
    [Google Scholar]
  10. Honda M., Rijnbrand R., Abell G., Kim D., Lemon S. M. 1999; Natural variation in translational activities of the 5′ nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J Virol 73:4941–4951
    [Google Scholar]
  11. Ina Y., Mizokami M., Ohba K., Gojobori T. 1994; Reduction of synonymous substitutions in the core protein gene of hepatitis C virus. J Mol Evol 38:50–56
    [Google Scholar]
  12. Inoue T., Cech T. R. 1985; Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A 82:648–652 [CrossRef]
    [Google Scholar]
  13. Janda M., Ahlquist P. 1998; Brome mosaic virus RNA replication protein 1a dramatically increases in vivo stability but not translation of viral genomic RNA3. Proc Natl Acad Sci U S A 95:2227–2232 [CrossRef]
    [Google Scholar]
  14. Keskinen P., Nyqvist M., Sareneva T., Pirhonen J., Melén K., Julkunen I. 1999; Impaired antiviral response in human hepatoma cells. Virology 263:364–375 [CrossRef]
    [Google Scholar]
  15. Kim Y. K., Lee S. H., Kim C. S., Seol S. K., Jang S. K. 2003; Long-range RNA–RNA interaction between the 5′ nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. RNA 9:599–606 [CrossRef]
    [Google Scholar]
  16. Kolykhalov A. A., Feinstone S. M., Rice C. M. 1996; Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J Virol 70:3363–3371
    [Google Scholar]
  17. Lee H., Shin H., Wimmer E., Paul A. V. 2004; cis -acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol (in press
    [Google Scholar]
  18. Lobert P.-E., Escriou N., Ruelle J., Michiels T. 1999; A coding RNA sequence acts as a replication signal in cardioviruses. Proc Natl Acad Sci U S A 96:11560–11565 [CrossRef]
    [Google Scholar]
  19. Mason P. W., Bezborodova S. V., Henry T. M. 2002; Identification and characterization of a cis -acting replication element ( cre ) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J Virol 76:9686–9694 [CrossRef]
    [Google Scholar]
  20. McKnight K. L., Lemon S. M. 1998; The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4:1569–1584 [CrossRef]
    [Google Scholar]
  21. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. 1995; Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14:6010–6020
    [Google Scholar]
  22. Reynolds J. E., Kaminski A., Carroll A. R., Clarke B. E., Rowlands D. J., Jackson R. J. 1996; Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2:867–878
    [Google Scholar]
  23. Rijnbrand R., Bredenbeek P. J., Haasnoot P. C., Kieft J. S., Spaan W. J. M., Lemon S. M. 2001; The influence of downstream protein-coding sequence on internal ribosome entry on hepatitis C virus and other flavivirus RNAs. RNA 7:585–597 [CrossRef]
    [Google Scholar]
  24. Roussel J., Pillez A., Montpellier C., Duverlie G., Cahour A., Dubuisson J., Wychowski C. 2003; Characterization of the expression of the hepatitis C virus F protein. J Gen Virol 84:1751–1759 [CrossRef]
    [Google Scholar]
  25. Shelness G. S., Williams D. L. 1985; Secondary structure analysis of apolipoprotein II mRNA using enzymatic probes and reverse transcriptase. Evaluation of primer extension for high resolution structure mapping of mRNA. J Biol Chem 260:8637–8646
    [Google Scholar]
  26. Simmonds P., Smith D. B. 1999; Structural constraints on RNA virus evolution. J Virol 73:5787–5794
    [Google Scholar]
  27. Simmonds P., Tuplin A., Evans D. J. 2004; Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: implications for virus evolution and host persistence. RNA (in press
    [Google Scholar]
  28. Smith D. B., Simmonds P. 1997; Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J Mol Evol 45:238–246 [CrossRef]
    [Google Scholar]
  29. Stern S., Moazed D., Noller H. F. 1988; Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol 164:481–489
    [Google Scholar]
  30. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. 1992; Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483
    [Google Scholar]
  31. Tuplin A., Wood J., Evans D. J., Patel A. H., Simmonds P. 2002; Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus. RNA 8:824–841 [CrossRef]
    [Google Scholar]
  32. Varaklioti A., Vassilaki N., Georgopoulou U., Mavromara P. 2002; Alternate translation occurs within the core coding region of the hepatitis C viral genome. J Biol Chem 277:17713–17721 [CrossRef]
    [Google Scholar]
  33. Vassilaki N., Mavromara P. 2003; Two alternative translation mechanisms are responsible for the expression of the HCV ARFP/F/core+1 coding open reading frame. J Biol Chem 278:40503–40513 [CrossRef]
    [Google Scholar]
  34. Walewski J. L., Keller T. R., Stump D. D., Branch A. D. 2001; Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7:710–721 [CrossRef]
    [Google Scholar]
  35. Walewski J. L., Gutierrez J. A., Branch-Elliman W., Stump D. D., Keller T. R., Rodriguez A., Benson G., Branch A. D. 2002; Mutation Master: profiles of substitutions in hepatitis C virus RNA of the core, alternate reading frame, and NS2 coding regions. RNA 8:557–571 [CrossRef]
    [Google Scholar]
  36. Wang C., Sarnow P., Siddiqui A. 1993; Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344
    [Google Scholar]
  37. Wang C., Le S. Y., Ali N., Siddiqui A. 1995; An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA 1:526–537
    [Google Scholar]
  38. Xu Z., Choi J., Yen T. S. B., Lu W., Strohecker A., Govindarajan S., Chien D., Selby M. J., Ou J. 2001; Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 20:3840–3848 [CrossRef]
    [Google Scholar]
  39. Xu Z., Choi J., Lu W., Ou J. 2003; Hepatitis C virus F protein is a short-lived protein associated with the endoplasmic reticulum. J Virol 77:1578–1583 [CrossRef]
    [Google Scholar]
  40. Yi M., Lemon S. M. 2003; 3′ nontranslated RNA signals required for replication of hepatitis C virus RNA. J Virol 77:3557–3568 [CrossRef]
    [Google Scholar]
  41. You S., Stump D. D., Branch A. D., Rice C. M. 2004; A cis -acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol 78:1352–1366 [CrossRef]
    [Google Scholar]
  42. Zuker M. 2000; Calculating nucleic acid secondary structure. Curr Opin Struct Biol 10:303–310 [CrossRef]
    [Google Scholar]
  43. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80141-0
Loading
/content/journal/jgv/10.1099/vir.0.80141-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error