1887

Abstract

The mature flavivirus particle comprises a nucleocapsid core surrounded by a lipid bilayer containing the membrane (M) (derived from the precursor prM) and envelope (E) proteins. The formation of intracellular prM/E heterodimers occurs rapidly after translation and is believed to be important for the assembly and secretion of immature virus particles. In this study, the role of the His residue at position 39 in the M protein (M39) of dengue virus type 2 (DENV-2) in the virus life cycle was investigated. Mutations encoding basic (Arg), non-polar (Leu and Pro) and uncharged polar (Asn, Gln and Tyr) amino acids at M39 were introduced into a DENV-2 genomic-length cDNA clone and their effects on virus replication were examined. Substitution of the His residue with non-polar amino acids abolished virus replication, whereas substitution with basic or uncharged polar amino acids decreased virus replication moderately (∼2 log p.f.u. ml decrease in viral titre for Arg and Asn) or severely (>3·5 log p.f.u. ml decrease in viral titre for Gln and Tyr). Selected mutations were introduced into a prM–E gene cassette and expressed transiently in COS cells to investigate whether the mutations impaired prM/E association or secretion. None of the mutations was found to disrupt the formation of intracellular prM/E heterodimers. However, the mutations that abolished virus replication prevented secretion of prM/E complexes. The results of this study pinpoint a critical residue in the M protein that potentially plays a role in viral morphogenesis, secretion and entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80283-0
2004-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853627.html?itemId=/content/journal/jgv/10.1099/vir.0.80283-0&mimeType=html&fmt=ahah

References

  1. Allison S. L., Mandl C. W., Kunz C., Heinz F. X. 1994; Expression of cloned envelope protein genes from the flavivirus tick-borne encephalitis virus in mammalian cells and random mutagenesis by PCR. Virus Genes 8:187–198 [CrossRef]
    [Google Scholar]
  2. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. 1995a; Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700
    [Google Scholar]
  3. Allison S. L., Stadler K., Mandl C. W., Kunz C., Heinz F. X. 1995b; Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69:5816–5820
    [Google Scholar]
  4. Allison S. L., Stiasny K., Stadler K., Mandl C. W., Heinz F. X. 1999; Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J Virol 73:5605–5612
    [Google Scholar]
  5. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Heinz F. X. 2001; Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75:4268–4275 [CrossRef]
    [Google Scholar]
  6. Amberg S. M., Rice C. M. 1999; Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73:8083–8094
    [Google Scholar]
  7. Anderson R., Wang S., Osiowy C., Issekutz A. C. 1997; Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 71:4226–4232
    [Google Scholar]
  8. Bressanelli S., Stiasny K., Allison S. L., Stura E. A., Duquerroy S., Lescar J., Heinz F. X., Rey F. A. 2004; Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738 [CrossRef]
    [Google Scholar]
  9. Burke D. S., Monath T. P. 2001; Flaviviruses. In Fields Virology , 4th edn. pp  1043–1125 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Strauss S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  10. Chang G.-J. J., Hunt A. R., Holmes D. A., Springfield T., Chiueh T.-S., Roehrig J. T., Gubler D. J. 2003; Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 306:170–180 [CrossRef]
    [Google Scholar]
  11. Courageot M. P., Frenkiel M. P., Duarte Dos Santos C., Deubel V., Desprès P. 2000; α -Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J Virol 74:564–572 [CrossRef]
    [Google Scholar]
  12. Elshuber S., Allison S. L., Heinz F. X., Mandl C. W. 2003; Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84:183–191 [CrossRef]
    [Google Scholar]
  13. Ferlenghi I., Clarke M., Ruttan T., Allison S. L., Schalich J., Heinz F. X., Harrison S. C., Rey F. A., Fuller S. D. 2001; Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7:593–602 [CrossRef]
    [Google Scholar]
  14. Fonseca B. A. L., Pincus S., Shope R. E., Paoletti E., Mason P. W. 1994; Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine 12:279–285 [CrossRef]
    [Google Scholar]
  15. Gruenberg A., Wright P. J. 1992; Processing of dengue virus type 2 structural proteins containing deletions in hydrophobic domains. Arch Virol 122:77–94 [CrossRef]
    [Google Scholar]
  16. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D. 1998; Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79:437–446
    [Google Scholar]
  17. Gubler D. J. 2002; Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103 [CrossRef]
    [Google Scholar]
  18. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C. 1991; Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 72:1323–1329 [CrossRef]
    [Google Scholar]
  19. Guirakhoo F., Bolin R. A., Roehrig J. T. 1992; The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191:921–931 [CrossRef]
    [Google Scholar]
  20. Guirakhoo F., Arroyo J., Pugachev K. V. 9 other authors 2001; Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 75:7290–7304 [CrossRef]
    [Google Scholar]
  21. He R. T., Innis B. L., Nisalak A., Usawattanakul W., Wang S., Kalayanarooj S., Anderson R. 1995; Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45:451–461 [CrossRef]
    [Google Scholar]
  22. Heinz F. X., Allison S. L. 2003; Flavivirus structure and membrane fusion. Adv Virus Res 59:63–97
    [Google Scholar]
  23. Heinz F. X., Stiasny K., Püschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. 1994; Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198:109–117 [CrossRef]
    [Google Scholar]
  24. Henchal E. A., McCown J. M., Burke D. S., Seguin M. C., Brandt W. E. 1985; Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg 34:162–169
    [Google Scholar]
  25. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  26. Holbrook M. R., Wang H., Barrett A. D. T. 2001; Langat virus M protein is structurally homologous to prM. J Virol 75:3999–4001 [CrossRef]
    [Google Scholar]
  27. Irie K., Mohan P. M., Sasaguri Y., Putnak R., Padmanabhan R. 1989; Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene 75:197–211 [CrossRef]
    [Google Scholar]
  28. Keelapang P., Sriburi R., Supasa S. 7 other authors 2004; Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J Virol 78:2367–2381 [CrossRef]
    [Google Scholar]
  29. Konishi E., Fujii A. 2002; Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20:1058–1067 [CrossRef]
    [Google Scholar]
  30. Konishi E., Mason P. W. 1993; Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol 67:1672–1675
    [Google Scholar]
  31. Konishi E., Pincus S., Fonseca B. A. L., Shope R. E., Paoletti E., Mason P. W. 1991; Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology 185:401–410 [CrossRef]
    [Google Scholar]
  32. Konishi E., Terazawa A., Fujii A. 2003; Evidence for antigen production in muscles by dengue and Japanese encephalitis DNA vaccines and a relation to their immunogenicity in mice. Vaccine 21:3713–3720 [CrossRef]
    [Google Scholar]
  33. Kuhn R. J., Zhang W., Rossmann M. G. 9 other authors 2002; Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725 [CrossRef]
    [Google Scholar]
  34. Lewis J. G., Chang G.-J., Lanciotti R. S., Trent D. W. 1992; Direct sequencing of large flavivirus PCR products for analysis of genome variation and molecular epidemiological investigations. J Virol Methods 38:11–23
    [Google Scholar]
  35. Lin B., Parrish C. R., Murray J. M., Wright P. J. 1994; Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202:885–890 [CrossRef]
    [Google Scholar]
  36. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  991–1041 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Strauss S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  37. Lorenz I. C., Allison S. L., Heinz F. X., Helenius A. 2002; Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76:5480–5491 [CrossRef]
    [Google Scholar]
  38. Lorenz I. C., Kartenbeck J., Mezzacasa A., Allison S. L., Heinz F. X., Helenius A. 2003; Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77:4370–4382 [CrossRef]
    [Google Scholar]
  39. Mackenzie J. M., Westaway E. G. 2001; Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75:10787–10799 [CrossRef]
    [Google Scholar]
  40. Mason P. W., Pincus S., Fournier M. J., Mason T. L., Shope R. E., Paoletti E. 1991; Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305 [CrossRef]
    [Google Scholar]
  41. Modis Y., Ogata S., Clements D., Harrison S. C. 2004; Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319 [CrossRef]
    [Google Scholar]
  42. Murray J. M., Aaskov J. G., Wright P. J. 1993; Processing of the dengue virus type 2 proteins prM and C-prM. J Gen Virol 74:175–182 [CrossRef]
    [Google Scholar]
  43. Op De Beeck A., Molenkamp R., Caron M., Ben Younes A., Bredenbeek P., Dubuisson J. 2003; Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J Virol 77:813–820 [CrossRef]
    [Google Scholar]
  44. Pryor M. J., Wright P. J. 1993; The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus. Virology 194:769–780 [CrossRef]
    [Google Scholar]
  45. Pryor M. J., Gualano R. C., Lin B., Davidson A. D., Wright P. J. 1998; Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J Gen Virol 79:2631–2639
    [Google Scholar]
  46. Putnak R., Barvir D. A., Burrous J. M., Dubois D. R., D'Andrea V. M., Hoke C. H., Sadoff J. C., Eckels K. H. 1996; Development of a purified, inactivated, dengue-2 virus vaccine prototype in Vero cells: immunogenicity and protection in mice and rhesus monkeys. J Infect Dis 174:1176–1184 [CrossRef]
    [Google Scholar]
  47. Randolph V. B., Stollar V. 1990; Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol 71:1845–1850 [CrossRef]
    [Google Scholar]
  48. Raviprakash K., Kochel T. J., Ewing D., Simmons M., Phillips I., Hayes C. G., Porter K. R. 2000; Immunogenicity of dengue virus type 1 DNA vaccines expressing truncated and full length envelope protein. Vaccine 18:2426–2434 [CrossRef]
    [Google Scholar]
  49. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  50. Roehrig J. T., Bolin R. A., Kelly R. G. 1998; Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246:317–328 [CrossRef]
    [Google Scholar]
  51. Russell P. K., Brandt W. E., Dalrymple J. 1980; Chemical and antigenic structure of flaviviruses. In The Togaviruses pp  503–529 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  52. Schalich J., Allison S. L., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. 1996; Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J Virol 70:4549–4557
    [Google Scholar]
  53. Smith G. W., Wright P. J. 1985; Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells. J Gen Virol 66:559–571 [CrossRef]
    [Google Scholar]
  54. Stadler K., Allison S. L., Schalich J., Heinz F. X. 1997; Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481
    [Google Scholar]
  55. Stiasny K., Allison S. L., Marchler-Bauer A., Kunz C., Heinz F. X. 1996; Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J Virol 70:8142–8147
    [Google Scholar]
  56. Stocks C. E., Lobigs M. 1995; Posttranslational signal peptidase cleavage at the flavivirus C-prM junction in vitro. J Virol 69:8123–8126
    [Google Scholar]
  57. Wang S., He R., Anderson R. 1999; PrM- and cell-binding domains of the dengue virus E protein. J Virol 73:2547–2551
    [Google Scholar]
  58. Wengler G., Wengler G. 1989; Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63:2521–2526
    [Google Scholar]
  59. Yamshchikov V. F., Compans R. W. 1993; Regulation of the late events in flavivirus protein processing and maturation. Virology 192:38–51 [CrossRef]
    [Google Scholar]
  60. Zhang W., Chipman P. R., Corver J. & 7 other authors (2003a). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912 [CrossRef]
    [Google Scholar]
  61. Zhang Y., Corver J., Chipman P. R. & 7 other authors (2003b). Structures of immature flavivirus particles. EMBO J 22:2604–2613 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80283-0
Loading
/content/journal/jgv/10.1099/vir.0.80283-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error