1887

Abstract

Virus genomes from the same family may exhibit a wide range in their DNA GC content, whereas viral hypermutants differ substantially in GC content from their parental genomes. As AT-rich DNA melts at lower temperatures than GC-rich DNA, use of a lower denaturation temperature during PCR should allow differential amplification of AT-rich genomes or variants within a quasispecies. The latter situation has been explored explicitly in a two-step process by using a series of well-defined viral sequences differing in their AT content. Firstly, the lowest denaturation temperature ( ) that allowed amplification of the parental sequence was determined. Secondly, differential amplification of AT-rich viral variants was obtained by using a denaturation temperature 1–3 °C lower than . Application of this sensitive method to two different viruses allowed us to identify human immunodeficiency virus type 1 G→A hypermutants in a situation where none were expected and to amplify AT-rich variants selectively within a spectrum of poliovirus mutants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80426-0
2005-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/1/vir860125.html?itemId=/content/journal/jgv/10.1099/vir.0.80426-0&mimeType=html&fmt=ahah

References

  1. Abu-Daya A., Fox K. R. 1997; Interaction of minor groove binding ligands with long AT tracts. Nucleic Acids Res 25:4962–4969 [CrossRef]
    [Google Scholar]
  2. Abu-Daya A., Brown P. M., Fox K. R. 1995; DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res 23:3385–3392 [CrossRef]
    [Google Scholar]
  3. Balanant J., Guillot S., Candrea A., Delpeyroux F., Crainic R. 1991; The natural genomic variability of poliovirus analyzed by a restriction fragment length polymorphism assay. Virology 184:645–654 [CrossRef]
    [Google Scholar]
  4. Bishop K. N., Holmes R. K., Sheehy A. M., Davidson N. O., Cho S.-J., Malim M. H. 2004; Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14:1392–1396 [CrossRef]
    [Google Scholar]
  5. Goodenow M., Huet T., Saurin W., Kwok S., Sninsky J., Wain-Hobson S. 1989; HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr 2:344–352
    [Google Scholar]
  6. Guillot S., Caro V., Cuervo N., Korotkova E., Combiescu M., Persu A., Aubert-Combiescu A., Delpeyroux F., Crainic R. 2000; Natural genetic exchanges between vaccine and wild poliovirus strains in humans. J Virol 74:8434–8443 [CrossRef]
    [Google Scholar]
  7. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N., Neuberger M. S., Malim M. H. 2003; DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809 [CrossRef]
    [Google Scholar]
  8. Janini M., Rogers M., Birx D. R., McCutchan F. E. 2001; Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4+ T cells. J Virol 75:7973–7986 [CrossRef]
    [Google Scholar]
  9. Jarmuz A., Chester A., Bayliss J., Gisbourne J., Dunham I., Scott J., Navaratnam N. 2002; An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79:285–296 [CrossRef]
    [Google Scholar]
  10. Lecossier D., Bouchonnet F., Clavel F., Hance A. J. 2003; Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112 [CrossRef]
    [Google Scholar]
  11. Liddament M. T., Brown W. L., Schumacher A. J., Harris R. S. 2004; APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14:1385–1391 [CrossRef]
    [Google Scholar]
  12. Martinez M. A., Vartanian J.-P., Wain-Hobson S. 1994; Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A 91:11787–11791 [CrossRef]
    [Google Scholar]
  13. Masny A., Płucienniczak A. 2003; Ligation mediated PCR performed at low denaturation temperatures – PCR melting profiles. Nucleic Acids Res 31:e114 [CrossRef]
    [Google Scholar]
  14. Pathak V. K., Temin H. M. 1990; Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci U S A 87:6019–6023 [CrossRef]
    [Google Scholar]
  15. Sheehy A. M., Gaddis N. C., Malim M. H. 2003; The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407 [CrossRef]
    [Google Scholar]
  16. Smith S. M., Markham R. B., Jeang K. T. 1996; Conditional reduction of human immunodeficiency virus type 1 replication by a gain-of-herpes simplex virus 1 thymidine kinase function. Proc Natl Acad Sci U S A 93:7955–7960 [CrossRef]
    [Google Scholar]
  17. Suspène R., Sommer P., Henry M. 7 other authors 2004; APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32:2421–2429 [CrossRef]
    [Google Scholar]
  18. Teng B., Burant C. F., Davidson N. O. 1993; Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260:1816–1819 [CrossRef]
    [Google Scholar]
  19. Vartanian J.-P., Meyerhans A., Åsjö B., Wain-Hobson S. 1991; Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65:1779–1788
    [Google Scholar]
  20. Wiegand H. L., Doehle B. P., Bogerd H. P., Cullen B. R. 2004; A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J 23:2451–2458 [CrossRef]
    [Google Scholar]
  21. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X.-F. 2003; Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060 [CrossRef]
    [Google Scholar]
  22. Yu Q., König R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J. M., Landau N. R. 2004; Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11:435–442 [CrossRef]
    [Google Scholar]
  23. Zheng Y.-H., Irwin D., Kurosu T., Tokunaga K., Sata T., Peterlin B. M. 2004; Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78:6073–6076 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80426-0
Loading
/content/journal/jgv/10.1099/vir.0.80426-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error