1887

Abstract

MicroRNAs (miRNAs) are ∼21–25 nt long and interact with mRNAs to lead to either translational repression or RNA cleavage through RNA interference. A previous study showed that human immunodeficiency virus 1 (HIV-1) dsRNA from AIDS patients who are long-term non-progressors inhibited HIV-1 transcription. In the study reported here, -derived miRNAs in HIV-1-infected and transduced cells were identified, and showed that HIV-1 transcription was suppressed by -expressing miRNA, miR-N367, in human T cells. The miR-N367 could reduce HIV-1 LTR promoter activity through the negative responsive element of the U3 region in the 5′-LTR. Therefore, miRNA produced in HIV-1-infected cells may downregulate HIV-1 transcription through both a post-transcriptional pathway and a transcriptional neo-pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80449-0
2005-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860751.html?itemId=/content/journal/jgv/10.1099/vir.0.80449-0&mimeType=html&fmt=ahah

References

  1. Aravin A. A., Naumova N. M., Tulin A. V., Vagin V. V., Rozovsky Y. M., Gvozdev V. A. 2001; Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027 [CrossRef]
    [Google Scholar]
  2. Baulcombe D. C. 2001; RNA silencing. Diced defence. Nature 409:295–296 [CrossRef]
    [Google Scholar]
  3. Boden D., Pusch O., Silbermann R., Lee F., Tucker L., Ramratnam B. 2004; Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 32:1154–1158 [CrossRef]
    [Google Scholar]
  4. Brisibe E. A., Okada N., Mizukami H., Okuyama H., Fujii Y. R. 2003; RNA interference: potentials for the prevention of HIV infections and the challenges ahead. Trends Biotechnol 21:306–311 [CrossRef]
    [Google Scholar]
  5. Cullen B. R., Lomedico P. T., Ju G. 1984; Transcriptional interference in avian retrovirus – implication for the promoter insertion model of leukaemogenesis. Nature 307:241–245 [CrossRef]
    [Google Scholar]
  6. D'Aloja P., Olivetta E., Bona R., Nappi F., Pedacchia D., Pugliese K., Ferrari G., Verani P., Federico M. 1998; gag , vif , and nef genes contribute to the homologous viral interference induced by a nonproducer human immunodeficiency virus type 1 (HIV-1) variant: identification of novel HIV-1-inhibiting viral protein mutants. J Virol 72:4308–4319
    [Google Scholar]
  7. Das A. T., Brummelkamp T. R., Westerhout E. M., Vink M., Madiredjo M., Bernards R., Berkhout B. 2004; Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78:2601–2605 [CrossRef]
    [Google Scholar]
  8. Deacon N. J., Tsykin A., Solomon A. 17 other authors 1995; Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991 [CrossRef]
    [Google Scholar]
  9. Doench J. G., Petersen C. P., Sharp P. A. 2003; siRNAs can function as miRNAs. Genes Dev 17:438–442 [CrossRef]
    [Google Scholar]
  10. Elbashir S. M., Lendeckel W., Tuschl T. 2001; RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200 [CrossRef]
    [Google Scholar]
  11. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. 1998; Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391:806–811 [CrossRef]
    [Google Scholar]
  12. Fish R. J., Kruithof E. K. 2004; Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 5:9 [CrossRef]
    [Google Scholar]
  13. Gottesman S. 2002; Stealth regulation: biological circuits with small RNA switches. Genes Dev 16:2829–2842 [CrossRef]
    [Google Scholar]
  14. Grad Y., Aach J., Hayes G. D., Reinhart B. J., Church G. M., Ruvkun G., Kim J. 2003; Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263 [CrossRef]
    [Google Scholar]
  15. Hatama S., Otake K., Omoto S., Murase Y., Ikemoto A., Mochizuki M., Takahashi E., Okuyama H., Fujii Y. R. 2001; Isolation and sequencing of infectious clones of feline foamy virus and human/feline foamy virus Env chimera. J Gen Virol 82:2999–3004
    [Google Scholar]
  16. Hill C. L., Bieniasz P. D., McClure M. O. 1999; Properties of human foamy virus relevant to its development as a vector for gene therapy. J Gen Virol 80:2003–2009
    [Google Scholar]
  17. Hobert O. 2004; Common logic of transcription factor and microRNA action. Trends Biochem Sci 29:462–468 [CrossRef]
    [Google Scholar]
  18. Jacque J. M., Triques K., Stevenson M. 2002; Modulation of HIV-1 replication by RNA interference. Nature 418:435–438 [CrossRef]
    [Google Scholar]
  19. Kawai M., He L., Kawamura T., Omoto S., Fujii Y. R., Okada N. 2003; Chimeric human/murine monoclonal IgM antibodies to HIV-1 Nef antigen expressed on chronically infected cells. Microbiol Immunol 47:247–253 [CrossRef]
    [Google Scholar]
  20. Kestler H. W. III, Ringler D. J., Mori K., Panicali D. L., Sehgal P. K., Daniel M. D., Desrosiers R. C. 1991; Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662 [CrossRef]
    [Google Scholar]
  21. Ketting R. F., Haverkamp T. H., van Luenen H. G., Plasterk R. H. 1999; Mut-7 of C. elegans , required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141 [CrossRef]
    [Google Scholar]
  22. Kirchhoff F., Greenough T. G., Brettler D. B., Sullivan J. L., Desrosiers R. C. 1995; Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332:228–232 [CrossRef]
    [Google Scholar]
  23. Learmont J. C., Geczy A. F., Mills J. 9 other authors 1999; Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. A report from the Sydney Blood Bank Cohort. N Engl J Med 340:1715–1722 [CrossRef]
    [Google Scholar]
  24. Lee Y., Jeon K., Lee J. T., Kim S., Kim V. N. 2002; MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670 [CrossRef]
    [Google Scholar]
  25. Lee Y., Ahn C., Han J. 8 other authors 2003; The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419 [CrossRef]
    [Google Scholar]
  26. Miyagishi M., Sumimoto H., Miyoshi H., Kawakami Y., Taira K. 2004; Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 6:715–723 [CrossRef]
    [Google Scholar]
  27. Nishitsuji H., Ikeda T., Miyoshi H., Ohashi T., Kannagi M., Masuda T. 2004; Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 6:76–85 [CrossRef]
    [Google Scholar]
  28. Olivetta E., Pugliese K., Bona R., D'Aloja P., Ferrantelli F., Santarcangelo A. C., Mattia G., Verani P., Federico M. 2000; cis expression of the F12 human immunodeficiency virus (HIV) Nef allele transforms the highly productive NL4-3 HIV type 1 to a replication-defective strain: involvement of both Env gp41 and CD4 intracytoplasmic tails. J Virol 74:483–492 [CrossRef]
    [Google Scholar]
  29. Omoto S., Brisibe E. A., Okuyama H., Fujii Y. R. 2004a; Feline foamy virus Tas protein is a DNA-binding transactivator. J Gen Virol 85:2931–2935 [CrossRef]
    [Google Scholar]
  30. Omoto S., Ito M., Tsutsumi Y., Ichikawa Y., Okuyama H., Brisibe E. A., Saksena N. K., Fujii Y. R. 2004b; HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1:44 [CrossRef]
    [Google Scholar]
  31. Pfeffer S., Zavolan M., Grasser F. A. 8 other authors 2004; Identification of virus-encoded microRNAs. Science 304:734–736 [CrossRef]
    [Google Scholar]
  32. Robert-Guroff M., Popovic M., Gartner S., Markham P., Gallo R. C., Reitz M. S. 1990; Structure and expression of tat -, rev -, and nef -specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol 64:3391–3398
    [Google Scholar]
  33. Sijen T., Plasterk R. H. 2003; Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–314 [CrossRef]
    [Google Scholar]
  34. Sunkar R., Zhu J. K. 2004; Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell 16:2001–2019 [CrossRef]
    [Google Scholar]
  35. Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C. C. 1999; The rde-1 gene, RNA interference, and transposon silencing in C. elegans . Cell 99:123–132 [CrossRef]
    [Google Scholar]
  36. Vella M. C., Choi E. Y., Lin S. Y., Reinert K., Slack F. J. 2004; The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 18:132–137 [CrossRef]
    [Google Scholar]
  37. Yamamoto T., Omoto S., Mizuguchi M. 7 other authors 2002; Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication. Microbiol Immunol 46:809–817 [CrossRef]
    [Google Scholar]
  38. Yekta S., Shih I., Bartel D. P. 2004; MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596 [CrossRef]
    [Google Scholar]
  39. Zeng Y., Yi R., Cullen B. R. 2003; MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779–9784 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80449-0
Loading
/content/journal/jgv/10.1099/vir.0.80449-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error