1887

Abstract

In February 2004 a highly pathogenic avian influenza (HPAI) outbreak erupted in British Columbia. Investigations indicated that the responsible HPAI H7N3 virus emerged suddenly from a low pathogenic precursor. Analysis of the haemagglutinin (HA) genes of the low and high pathogenic viruses isolated from the index farm revealed the only difference to be a 21 nt insert at the HA cleavage site of the highly pathogenic avian influenza virus. It was deduced that this insert most probably arose as a result of non-homologous recombination between the HA and matrix genes of the same virus. Over the course of the outbreak, a total of 37 isolates with, and 3 isolates without inserts were characterized. The events described here appear very similar to those which occurred in Chile in 2002 where the virulence shift of another H7N3 virus was attributed to non-homologous recombination between the HA and nucleoprotein genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80478-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860727.html?itemId=/content/journal/jgv/10.1099/vir.0.80478-0&mimeType=html&fmt=ahah

References

  1. Banks J., Speidel E. C., McCauley J. W., Alexander D. J. 2000; Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Arch Virol 145:1047–1058 [CrossRef]
    [Google Scholar]
  2. Barr P. J. 1991; Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66:1–3 [CrossRef]
    [Google Scholar]
  3. Bergman M., García-Sastre A., Palese P. 1992; Transfection-mediated recombination of influenza A virus. J Virol 66:7576–7580
    [Google Scholar]
  4. Bosch F. X., Orlich M., Klenck H.-D., Rott R. 1979; The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95:197–207 [CrossRef]
    [Google Scholar]
  5. Bosch F. X., Garten W., Klenk H.-D., Rott R. 1981; Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735 [CrossRef]
    [Google Scholar]
  6. Chen J., Lee K. H., Steinhauer D. A., Stevens D. J., Skehel J. J., Wiley D. C. 1998; Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417 [CrossRef]
    [Google Scholar]
  7. Domingo E., Holland J. J. 1997; RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178 [CrossRef]
    [Google Scholar]
  8. Fields S., Winter G. 1982; Nucleotide sequences of influenza virus segments 1 and 3 reveal mosaic structure of a small viral RNA segment. Cell 28:303–313 [CrossRef]
    [Google Scholar]
  9. Garcia M., Crawford J. M., Latimer J. W., Rivera-Cruz E., Perdue M. L. 1996; Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 77:1493–1504 [CrossRef]
    [Google Scholar]
  10. Horimoto T., Rivera E., Pearson J., Senne D., Krauss S., Kawaoka Y., Webster R. G. 1995; Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213:223–230 [CrossRef]
    [Google Scholar]
  11. Khatchikian D., Orlich M., Rott R. 1989; Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340:156–157 [CrossRef]
    [Google Scholar]
  12. Orlich M., Khatchikan D., Teigler A., Rott R. 1990; Structural variation occurring in the hemagglutinin of influenza virus A/turkey/Oregon/71 during adaptation to different cell types. Virology 176:531–538 [CrossRef]
    [Google Scholar]
  13. Orlich M., Gottwald H., Rott R. 1994; Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204:462–465 [CrossRef]
    [Google Scholar]
  14. Perdue M. L., Latimer J., Beck J., Brugh M. 1992; Occurance and stability of cleavable hemagglutinin in the A/Ck/Pa/21525/83 (H5N2) population of avian influenza virus. In Proceedings of the 3rd International Symposium on Avian Influenza, Madison, WI pp  211–217
    [Google Scholar]
  15. Perdue M. L., Latimer J., Greene C., Holt P. 1994; Consistent occurrence of hemagglutinin variants among avian influenza virus isolates of the H7 subtype. Virus Res 34:15–29 [CrossRef]
    [Google Scholar]
  16. Rott R., Orlich M., Scholtissek C. 1976; Attenuation of pathogenicity of fowl plague virus by recombination with other influenza A viruses nonpathogenic for fowl: nonexclusive dependence of pathogenicity on hemagglutinin and neuraminidase of the virus. J Virol 19:54–60
    [Google Scholar]
  17. Scholtissek C., Rott R., Orlich M., Harms E., Rohde W. 1977; Correlation of pathogenicity and gene constellation of an influenza A virus (fowl plague). I. Exchange of a single gene. Virology 81:74–80 [CrossRef]
    [Google Scholar]
  18. Senne D. A., Panigrahy B., Kawaoka Y., Pearson J. E., Süss J., Lipkind M., Kida H., Webster R. G. 1996; Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40:425–437 [CrossRef]
    [Google Scholar]
  19. Spackman E., Senne D. A., Myers T. J., Bulaga L. L., Garber L. P., Perdue M. L., Lohman K., Daum L. T., Suarez D. L. 2002; Development of a real-time reverse transcriptase PCR assay for type A influenza virus and avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3256–3260 [CrossRef]
    [Google Scholar]
  20. Spackman E., Senne D. A., Davison S., Suarez D. L. 2003; Sequence analysis of recent H7 influenza viruses associated with three different outbreaks in commercial poultry in the United States. J Virol 77:13399–13402 [CrossRef]
    [Google Scholar]
  21. Stieneke-Grober A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W. 1992; Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407–2414
    [Google Scholar]
  22. Suarez D. L., Senne D. A., Banks J. 11 other authors 2004; Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10:693–699 [CrossRef]
    [Google Scholar]
  23. Swayne D. E., Halverson D. A. 2003; Influenza. In Diseases of Poultry , 11th edn. pp  135–160 Edited by Saif Y. M., Barnes H. J., Glisson J. R., Fadly A. M., McDougald L. R., Swayne D. E. Iowa: Iowa State Press;
    [Google Scholar]
  24. Van Deusen R. A., Hinshaw V. S., Senne D. A., Pellacani D. 1983; Micro neuraminidase-inhibition assay for classification of influenza A virus neuraminidases. Avian Dis27,745–750 [CrossRef]
    [Google Scholar]
  25. Vey M., Orlich M., Adler S., Klenk H.-D., Rott R., Garten W. 1992; Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188:408–413 [CrossRef]
    [Google Scholar]
  26. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394 [CrossRef]
    [Google Scholar]
  27. Wood G. W., McCauley J. W., Bashiruddin J. B., Alexander D. J. 1993; Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol 130:209–217 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80478-0
Loading
/content/journal/jgv/10.1099/vir.0.80478-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error