1887

Abstract

Sequence data for eight genes, together with time-course Northern blotting and 3′- and 5′-RACE (rapid amplification of cDNA ends) analysis for some mRNAs from a 12 kb region upstream from the major immediate-early (MIE) genes of the English isolate of rat cytomegalovirus (RCMV), are presented. The results identified important differences compared to both murine cytomegalovirus (MCMV) and the Maastricht isolate of RCMV. A striking finding is the presence of a highly conserved, rightwards-oriented homologue of the rat cellular CD200 (OX2) gene immediately to the right of the MIE region, which replaces either the leftwards-oriented AAV REP gene of RCMV (Maastricht) or the upstream spliced portions of the immediate-early 2 gene (ie2) in MCMV. From the presence of other homologues of MCMV- and RCMV-specific genes, such as the -chemokine MCK-2, SGG1 and an Fc receptor gene, as reported here, the basic architecture of the MIE region (reported previously) and the level of IE2 and DNA polymerase (POL) protein conservation in phylogenetic analyses, it is clear that the English strain of RCMV is also a member of the genus , but is a -herpesvirus species that is very distinct from both MCMV and RCMV (Maastricht). Both the lack of a CD200 homologue in the other two rodent viruses and the depth of sequence divergence of the rodent CMV IE2 and POL proteins suggest that these three viruses have evolved as separate species in the genus since very early in the host rodent lineage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80539-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/2/vir860263.html?itemId=/content/journal/jgv/10.1099/vir.0.80539-0&mimeType=html&fmt=ahah

References

  1. Akter P., Cunningham C., McSharry B. P. 8 other authors 2003; Two novel spliced genes in human cytomegalovirus. J Gen Virol 84:1117–1122 [CrossRef]
    [Google Scholar]
  2. Alexander L., Denekamp L., Knapp A., Auerbach M. R., Damania B., Desrosiers R. C. 2000; The primary sequence of rhesus monkey rhadinovirus isolate 26-95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74:3388–3398 [CrossRef]
    [Google Scholar]
  3. Atalay R., Zimmermann A., Wagner M., Borst E., Benz C., Messerle M., Hengel H. 2002; Identification and expression of human cytomegalovirus transcription units coding for two distinct Fc γ receptor homologs. J Virol 76:8596–8608 [CrossRef]
    [Google Scholar]
  4. Bahr U., Darai G. 2001; Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol 75:4854–4870 [CrossRef]
    [Google Scholar]
  5. Barclay A. N. 1981; Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44:727–736
    [Google Scholar]
  6. Barclay A. N., Ward H. A. 1982; Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognised by monoclonal antibody MRC OX 2. Eur J Biochem 129:447–458 [CrossRef]
    [Google Scholar]
  7. Barclay A. N., Clark M. J., McCaughan G. W. 1986; Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Biochem Soc Symp 51:149–157
    [Google Scholar]
  8. Beisser P. S., Kaptein S. J. F., Beuken E., Bruggeman C. A., Vink C. 1998; The Maastricht strain and England strain of rat cytomegalovirus represent different betaherpesvirus species rather than strains. Virology 246:341–351 [CrossRef]
    [Google Scholar]
  9. Bruggeman C. A., Meijer H., Dormans P. H., Debie W. M., Grauls G. E., van Boven C. P. 1982; Isolation of a cytomegalovirus-like agent from wild rats. Arch Virol 73:231–241 [CrossRef]
    [Google Scholar]
  10. Brune W., Messerle M., Koszinowski U. H. 2000; Forward with BACs: new tools for herpesvirus genomics. Trends Genet 16:254–259 [CrossRef]
    [Google Scholar]
  11. Burns W. H., Barbour G. M., Sandford G. R. 1988; Molecular cloning and mapping of rat cytomegalovirus DNA. Virology 166:140–148 [CrossRef]
    [Google Scholar]
  12. Cameron C., Hota-Mitchell S., Chen L., Barrett J., Cao J.-X., Macaulay C., Willer D., Evans D., McFadden G. 1999; The complete DNA sequence of myxoma virus. Virology 264:298–318 [CrossRef]
    [Google Scholar]
  13. Cardin R. D., Abenes G. B., Stoddart C. A., Mocarski E. S. 1995; Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209:236–241 [CrossRef]
    [Google Scholar]
  14. Cha T.-A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R. 1996; Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83
    [Google Scholar]
  15. Chee M. S., Bankier A. T., Beck S. 12 other authors 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169
    [Google Scholar]
  16. Chung Y.-H., Means R. E., Choi J.-K., Lee B.-S., Jung J. U. 2002; Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J Virol 76:4688–4698 [CrossRef]
    [Google Scholar]
  17. Clark M. J., Gagnon J., Williams A. F., Barclay A. N. 1985; MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain. EMBO J 4:113–118
    [Google Scholar]
  18. Crnković-Mertens I., Messerle M., Milotić I., Szepan U., Kučić N., Krmpotić A., Jonjić S., Koszinowski U. H. 1998; Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J Virol 72:1377–1382
    [Google Scholar]
  19. Davison A. J. 2002; Evolution of the herpesviruses. Vet Microbiol 86:69–88 [CrossRef]
    [Google Scholar]
  20. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28 [CrossRef]
    [Google Scholar]
  21. Dolan A., Cunningham C., Hector R. D. 12 other authors 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [CrossRef]
    [Google Scholar]
  22. Foster-Cuevas M., Wright G. J., Puklavec M. J., Brown M. H., Barclay A. N. 2004; Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J Virol 78:7667–7676 [CrossRef]
    [Google Scholar]
  23. French C., Menegazzi P., Nicholson L., Macaulay H., DiLuca D., Gompels U. A. 1999; Novel, nonconsensus cellular splicing regulates expression of a gene encoding a chemokine-like protein that shows high variation and is specific for human herpesvirus 6. Virology 262:139–151 [CrossRef]
    [Google Scholar]
  24. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51 [CrossRef]
    [Google Scholar]
  25. Gorczynski R. M., Cattral M. S., Chen Z., Hu J., Lei J., Min W.-P., Yu G., Ni J. 1999; An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163:1654–1660
    [Google Scholar]
  26. Haggerty S. M., Schleiss M. R. 2002; A novel CC-chemokine homolog encoded by guinea pig cytomegalovirus. Virus Genes 25:271–279 [CrossRef]
    [Google Scholar]
  27. Hansen S. G., Strelow L. I., Franchi D. C., Anders D. G., Wong S. W. 2003; Complete sequence and genomic analysis of rhesus cytomegalovirus. J Virol 77:6620–6636 [CrossRef]
    [Google Scholar]
  28. Hoek R. M., Ruuls S. R., Murphy C. A. 9 other authors 2000; Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771 [CrossRef]
    [Google Scholar]
  29. Kaptein S. J., van Cleef K. W., Gruijthuijsen Y. K., Beuken E. V., van Buggenhout L., Beisser P. S., Stassen F. R., Bruggeman C. A., Vink C. 2004; The r131 gene of rat cytomegalovirus encodes a proinflammatory CC chemokine homolog which is essential for the production of infectious virus in the salivary glands. Virus Genes 29:43–61 [CrossRef]
    [Google Scholar]
  30. Kilpatrick D. R., Rouhandeh H. 1985; Cloning and physical mapping of Yaba monkey tumor virus DNA. Virology 143:399–406 [CrossRef]
    [Google Scholar]
  31. Lagenaur L. A., Manning W. C., Vieira J., Martens C. L., Mocarski E. S. 1994; Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells. J Virol 68:7717–7727
    [Google Scholar]
  32. Lee H.-J., Essani K., Smith G. L. 2001; The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281:170–192 [CrossRef]
    [Google Scholar]
  33. Lilley B. N., Ploegh H. L., Tirabassi R. S. 2001; Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J Virol 75:11218–11221 [CrossRef]
    [Google Scholar]
  34. Lüttichau H. R., Clark-Lewis I., Jensen P. Ø., Moser C., Gerstoft J., Schwartz T. W. 2003; A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J Biol Chem 278:10928–10933 [CrossRef]
    [Google Scholar]
  35. MacDonald M. R., Li X.-Y., Virgin H. W. IV 1997; Late expression of a β chemokine homolog by murine cytomegalovirus. J Virol 71:1671–1678
    [Google Scholar]
  36. MacDonald M. R., Burney M. W., Resnick S. B., Virgin H. W. IV 1999; Spliced mRNA encoding the murine cytomegalovirus chemokine homolog predicts a β chemokine of novel structure. J Virol 73:3682–3691
    [Google Scholar]
  37. Manning W. C., Stoddart C. A., Lagenaur L. A., Abenes G. B., Mocarski E. S. 1992; Cytomegalovirus determinant of replication in salivary glands. J Virol 66:3794–3802
    [Google Scholar]
  38. McMaster W. R., Williams A. F. 1979; Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol 9:426–433 [CrossRef]
    [Google Scholar]
  39. Ménard C., Wagner M., Ruzsics Z., Holak K., Brune W., Campbell A. E., Koszinowski U. H. 2003; Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570 [CrossRef]
    [Google Scholar]
  40. Messerle M., Keil G. M., Koszinowski U. H. 1991; Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol 65:1638–1643
    [Google Scholar]
  41. Murphy E., Yu D., Grimwood J. 7 other authors 2003; Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100:14976–14981 [CrossRef]
    [Google Scholar]
  42. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70:5975–5989
    [Google Scholar]
  43. Nicholas J., Ruvolo V. R., Burns W. H. 7 other authors 1997; Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3:287–292 [CrossRef]
    [Google Scholar]
  44. Penfold M., Miao Z., Wang Y., Haggerty S., Schleiss M. R. 2003; A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1. Virology 316:202–212 [CrossRef]
    [Google Scholar]
  45. Priscott P. K., Tyrrell D. A. J. 1982; The isolation and partial characterisation of a cytomegalovirus from the brown rat, Rattus norvegicus . Arch Virol 73:145–160 [CrossRef]
    [Google Scholar]
  46. Ragheb R., Abrahams S., Beecroft R., Hu J., Ni J., Ramakrishna V., Yu G., Gorczynski R. M. 1999; Preparation and functional properties of monoclonal antibodies to human, mouse and rat OX-2. Immunol Lett 68:311–315 [CrossRef]
    [Google Scholar]
  47. Rawlinson W. D., Farrell H. E., Barrell B. G. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849
    [Google Scholar]
  48. Russo J. J., Bohenzky R. A., Chien M.-C. 8 other authors 1996; Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93:14862–14867 [CrossRef]
    [Google Scholar]
  49. Sandford G. R., Burns W. H. 1996; Rat cytomegalovirus has a unique immediate early gene enhancer. Virology 222:310–317 [CrossRef]
    [Google Scholar]
  50. Sandford G. R., Ho K., Burns W. H. 1993; Characterization of the major locus of immediate-early genes of rat cytomegalovirus. J Virol 67:4093–4103
    [Google Scholar]
  51. Smith L. M., Tonkin J. N., Lawson M. A., Shellam G. R. 2004; Isolates of cytomegalovirus (CMV) from the black rat Rattus rattus form a distinct group of rat CMV. J Gen Virol 85:1313–1317 [CrossRef]
    [Google Scholar]
  52. Thäle R., Lucin P., Schneider K., Eggers M., Koszinowski U. H. 1994; Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 68:7757–7765
    [Google Scholar]
  53. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Kutish G. F., Rock D. L. 2001; Genome of lumpy skin disease virus. J Virol 75:7122–7130 [CrossRef]
    [Google Scholar]
  54. van Cleef K. W. R., Scaf W. M. A., Maes K. 7 other authors 2004; The rat cytomegalovirus homologue of parvoviral rep genes, r127, encodes a nuclear protein with single- and double-stranded DNA-binding activity that is dispensable for virus replication. J Gen Virol 85:2001–2013 [CrossRef]
    [Google Scholar]
  55. Vieira J., Farrell H. E., Rawlinson W. D., Mocarski E. S. 1994; Genes in the Hin dIII J fragment of the murine cytomegalovirus genome are dispensable for growth in cultured cells: insertion mutagenesis with a lacZ / gpt cassette. J Virol 68:4837–4846
    [Google Scholar]
  56. Vink C., Beuken E., Bruggeman C. A. 2000; Complete DNA sequence of the rat cytomegalovirus genome. J Virol 74:7656–7665 [CrossRef]
    [Google Scholar]
  57. Voigt S., Sandford G. R., Ding L., Burns W. H. 2001; Identification and characterization of a spliced C-type lectin-like gene encoded by rat cytomegalovirus. J Virol 75:603–611 [CrossRef]
    [Google Scholar]
  58. Willer D. O., McFadden G., Evans D. H. 1999; The complete genome sequence of Shope (rabbit) fibroma virus. Virology 264:319–343 [CrossRef]
    [Google Scholar]
  59. Wright G. J., Puklavec M. J., Willis A. C., Hoek R. M., Sedgwick J. D., Brown M. H., Barclay A. N. 2000; Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233–242 [CrossRef]
    [Google Scholar]
  60. Wright G. J., Jones M., Puklavec M. J., Brown M. H., Barclay A. N. 2001; The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102:173–179 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80539-0
Loading
/content/journal/jgv/10.1099/vir.0.80539-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error