1887

Abstract

The nucleopolyhedrovirus (CfMNPV) encodes an ORF homologous to type III 3′–5′ exonucleases. The CfMNPV ORF was cloned into the Bac-to-Bac baculovirus expression-vector system, expressed in insect Sf21 cells with an N-terminal His tag and purified to homogeneity by using Ni-NTA affinity chromatography. Biochemical characterization of the purified V-TREX confirmed that this viral protein is a functional 3′–5′ exonuclease that cleaves oligonucleotides from the 3′ end in a stepwise, distributive manner, suggesting a role in proofreading during viral DNA replication and DNA repair. Enhanced degradation of a 5′-digoxigenin- or 5′-P-labelled oligo(dT) substrate was observed at increasing incubation times or increased amounts of V-TREX. The 3′-excision activity of V-TREX was maximal at alkaline pH (9·5) in the presence of 5 mM MgCl, 2 mM dithiothreitol and 0·1 mg BSA ml.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80592-0
2004-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853569.html?itemId=/content/journal/jgv/10.1099/vir.0.80592-0&mimeType=html&fmt=ahah

References

  1. Barnes M. H., Spacciapoli P., Li D. H., Brown N. C. 1995; The 3′–5′ exonuclease site of DNA polymerase III from Gram-positive bacteria: definition of a novel motif structure. Gene 165:45–50 [CrossRef]
    [Google Scholar]
  2. Bernad A., Blanco L., Lázaro J. M., Martín G., Salas M. 1989; A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228 [CrossRef]
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Bronstein J. C., Weber P. C. 1996; Purification and characterization of herpes simplex virus type 1 alkaline exonuclease expressed in Escherichia coli . J Virol 70:2008–2013
    [Google Scholar]
  5. Bzymek M., Saveson C. J., Feschenko V. V., Lovett S. T. 1999; Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. J Bacteriol 181:477–482
    [Google Scholar]
  6. Hoffmann P. J., Cheng Y.-C. 1979; DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. II. Characterization of an associated endonuclease activity. J Virol 32:449–457
    [Google Scholar]
  7. Kruchen B., Rueger B. 2003; The DIG system – nonradioactive and highly sensitive detection of nucleic acids. Biochemica 3:13–15
    [Google Scholar]
  8. Lahue R. S., Au K. G., Modrich P. 1989; DNA mismatch correction in a defined system. Science 245:160–164 [CrossRef]
    [Google Scholar]
  9. Lehman I. R., Nussbaum A. L. 1964; The deoxyribonucleases of Escherichia coli . V. On the specificity of exonuclease I (phosphodiesterase). J Biol Chem 239:2628–2636
    [Google Scholar]
  10. Li L., Rohrmann G. F. 2000; Characterization of a baculovirus alkaline nuclease. J Virol 74:6401–6407 [CrossRef]
    [Google Scholar]
  11. Mazur D. J., Perrino F. W. 1999; Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases. J Biol Chem 274:19655–19660 [CrossRef]
    [Google Scholar]
  12. Mazur D. J., Perrino F. W. 2001; Excision of 3′ termini by the TREX1 and TREX2 3′→5′ exonucleases. Characterization of the recombinant proteins. J Biol Chem 276:17022–17029 [CrossRef]
    [Google Scholar]
  13. Mikhailov V. S., Okano K., Rohrmann G. F. 2003; Baculovirus alkaline nuclease possesses a 5′→3′ exonuclease activity and associates with the DNA-binding protein LEF-3. J Virol 77:2436–2444 [CrossRef]
    [Google Scholar]
  14. Mikhailov V. S., Okano K., Rohrmann G. F. 2004; Specificity of the endonuclease activity of the baculovirus alkaline nuclease for single-stranded DNA. J Biol Chem 279:14734–14745 [CrossRef]
    [Google Scholar]
  15. Razavy H., Szigety S. K., Rosenberg S. M. 1996; Evidence for both 3′ and 5′ single-strand DNA ends in intermediates in chi-stimulated recombination in vivo . Genetics 142:333–339
    [Google Scholar]
  16. Scheuermann R. H., Echols H. 1984; A separate editing exonuclease for DNA replication: the ε subunit of Escherichia coli DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 81:7747–7751 [CrossRef]
    [Google Scholar]
  17. Slack J. M., Ribeiro B. M., Lobo de Souza M. 2004; The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus contains a 3′ repair exonuclease homologue and lacks v-cath and ChiA genes. J Gen Virol 85:211–219 [CrossRef]
    [Google Scholar]
  18. Strauss B. S., Sagher D., Acharya S. 1997; Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. Nucleic Acids Res 25:806–813 [CrossRef]
    [Google Scholar]
  19. Taft-Benz S. A., Schaaper R. M. 1998; Mutational analysis of the 3′-5′ proofreading exonuclease of Escherichia coli DNA polymerase III. Nucleic Acids Res 26:4005–4011 [CrossRef]
    [Google Scholar]
  20. Viswanathan M., Lovett S. T. 1999; Exonuclease X of Escherichia coli . A novel 3′→5′ DNase and DnaQ superfamily member involved in DNA repair. J Biol Chem 274:30094–30100 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80592-0
Loading
/content/journal/jgv/10.1099/vir.0.80592-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error