1887

Abstract

The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80677-0
2005-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/4/vir861045.html?itemId=/content/journal/jgv/10.1099/vir.0.80677-0&mimeType=html&fmt=ahah

References

  1. Agapov E. V., Frolov I., Lindenbach B. D., Prágai B. M., Schlesinger S., Rice C. M. 1998; Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 95:12989–12994 [CrossRef]
    [Google Scholar]
  2. Anraku I., Harvey T. J., Linedale R., Gardner J., Harrich D., Suhrbier A., Khromykh A. A. 2002; Kunjin virus replicon vaccine vectors induce protective CD8+ T-cell immunity. J Virol 76:3791–3799 [CrossRef]
    [Google Scholar]
  3. Balasuriya U. B. R., Heidner H. W., Hedges J. F., Williams J. C., Davis N. L., Johnston R. E., MacLachlan N. J. 2000; Expression of the two major envelope proteins of equine arteritis virus as a heterodimer is necessary for induction of neutralizing antibodies in mice immunized with recombinant Venezuelan equine encephalitis virus replicon particles. J Virol 74:10623–10630 [CrossRef]
    [Google Scholar]
  4. Balasuriya U. B. R., Heidner H. W., Davis N. L. 8 other authors 2002; Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine 20:1609–1617 [CrossRef]
    [Google Scholar]
  5. Bredenbeek P. J., Frolov I., Rice C. M., Schlesinger S. 1993; Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67:6439–6446
    [Google Scholar]
  6. Daemen T., Riezebos-Brilman A., Bungener L., Regts J., Dontje B., Wilschut J. 2003; Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine 21:1082–1088 [CrossRef]
    [Google Scholar]
  7. Davis N. L., Caley I. J., Brown K. W. 9 other authors 2000; Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 74:371–378 [CrossRef]
    [Google Scholar]
  8. Dufresne A. T., Dobrikova E. Y., Schmidt S., Gromeier M. 2002; Genetically stable picornavirus expression vectors with recombinant internal ribosomal entry sites. J Virol 76:8966–8972 [CrossRef]
    [Google Scholar]
  9. Frolov I., Schlesinger S. 1994; Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 68:1721–1727
    [Google Scholar]
  10. Frolov I., Agapov E., Hoffman T. A. Jr, Prágai B. M., Lippa M., Schlesinger S., Rice C. M. 1999; Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73:3854–3865
    [Google Scholar]
  11. Gehrke R., Ecker M., Aberle S. W., Allison S. L., Heinz F. X., Mandl C. W. 2003; Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 77:8924–8933 [CrossRef]
    [Google Scholar]
  12. Gipson C. L., Davis N. L., Johnston R. E., de Silva A. M. 2003; Evaluation of Venezuelan equine encephalitis (VEE) replicon-based outer surface protein A (OspA) vaccines in a tick challenge mouse model of Lyme disease. Vaccine 21:3875–3884 [CrossRef]
    [Google Scholar]
  13. Hall R. A., Nisbet D. J., Pham K. B., Pyke A. T., Smith G. A., Khromykh A. A. 2003; DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A 100:10460–10464 [CrossRef]
    [Google Scholar]
  14. Hanke T., Barnfield C., Wee E. G.-T., Ågren L., Samuel R. V., Larke N., Liljeström P. 2003; Construction and immunogenicity in a prime–boost regimen of a Semliki Forest virus-vectored experimental HIV clade A vaccine. J Gen Virol 84:361–368 [CrossRef]
    [Google Scholar]
  15. Harvey T. J., Anraku I., Linedale R., Harrich D., Mackenzie J., Suhrbier A., Khromykh A. A. 2003; Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. J Virol 77:7796–7803 [CrossRef]
    [Google Scholar]
  16. Harvey T. J., Liu W. J., Wang X. J. 8 other authors 2004; Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J Virol 78:531–538 [CrossRef]
    [Google Scholar]
  17. Hayasaka D., Yoshii K., Ueki T., Iwasaki T., Takashima I. 2004; Sub-genomic replicons of Tick-borne encephalitis virus . Arch Virol 149:1245–1256 [CrossRef]
    [Google Scholar]
  18. Hevey M., Negley D., Pushko P., Smith J., Schmaljohn A. 1998; Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 251:28–37 [CrossRef]
    [Google Scholar]
  19. Hewson R. 2000; RNA viruses: emerging vectors for vaccination and gene therapy. Mol Med Today 6:28–35 [CrossRef]
    [Google Scholar]
  20. Jia Q., Liang F., Ohka S., Nomoto A., Hashikawa T. 2002; Expression of brain-derived neurotrophic factor in the central nervous system of mice using a poliovirus-based vector. J Neurovirol 8:14–23
    [Google Scholar]
  21. Khromykh A. A. 2000; Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2:555–569
    [Google Scholar]
  22. Khromykh A. A., Westaway E. G. 1997; Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505
    [Google Scholar]
  23. Kong W., Tian C., Liu B., Yu X.-F. 2002; Stable expression of primary human immunodeficiency virus type 1 structural gene products by use of a noncytopathic Sindbis virus vector. J Virol 76:11434–11439 [CrossRef]
    [Google Scholar]
  24. Lawrie C. H., Uzcátegui N. Y., Armesto M., Bell-Sakyi L., Gould E. A. 2004; Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med Vet Entomol 18:268–274 [CrossRef]
    [Google Scholar]
  25. Liljeström P., Garoff H. 1991; A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9:1356–1361 [CrossRef]
    [Google Scholar]
  26. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  991–1041 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  27. Lo M. K., Tilgner M., Bernard K. A., Shi P.-Y. 2003a; Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77:10004–10014 [CrossRef]
    [Google Scholar]
  28. Lo M. K., Tilgner M., Shi P.-Y. 2003b; Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol 77:12901–12906 [CrossRef]
    [Google Scholar]
  29. Lundstrom K. 2001; Alphavirus vectors for gene therapy applications. Curr Gene Ther 1:19–29 [CrossRef]
    [Google Scholar]
  30. Lundstrom K. 2003; Alphavirus vectors for vaccine production and gene therapy. Expert Rev Vaccines 2:445–459 [CrossRef]
    [Google Scholar]
  31. Mandl C. W., Holzmann H., Kunz C., Heinz F. X. 1993; Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194:173–184 [CrossRef]
    [Google Scholar]
  32. Mandl C. W., Ecker M., Holzmann H., Kunz C., Heinz F. X. 1997; Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J Gen Virol 78:1049–1057
    [Google Scholar]
  33. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X. 1998; Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol 72:2132–2140
    [Google Scholar]
  34. Molenkamp R., Kooi E. A., Lucassen M. A., Greve S., Thijssen J. C. P., Spaan W. J. M., Bredenbeek P. J. 2003; Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 77:1644–1648 [CrossRef]
    [Google Scholar]
  35. Pang X., Zhang M., Dayton A. I. 2001; Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol 1:18 [CrossRef]
    [Google Scholar]
  36. Perri S., Driver D. A., Gardner J. P., Sherrill S., Belli B. A., Dubensky T. W. Jr, Polo J. M. 2000; Replicon vectors derived from Sindbis virus and Semliki Forest virus that establish persistent replication in host cells. J Virol 74:9802–9807 [CrossRef]
    [Google Scholar]
  37. Perri S., Greer C. E., Thudium K. 10 other authors 2003; An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and Sindbis viruses is a potent gene-based vaccine delivery vector. J Virol 77:10394–10403 [CrossRef]
    [Google Scholar]
  38. Proutski V., Gaunt M. W., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. J Gen Virol 78:1543–1549
    [Google Scholar]
  39. Pugachev K. V., Guirakhoo F., Ocran S. W. 8 other authors 2004; High fidelity of yellow fever virus RNA polymerase. J Virol 78:1032–1038 [CrossRef]
    [Google Scholar]
  40. Pushko P., Parker M., Ludwig G. V., Davis N. L., Johnston R. E., Smith J. F. 1997; Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo . Virology 239:389–401 [CrossRef]
    [Google Scholar]
  41. Rauscher S., Flamm C., Mandl C. W., Heinz F. X., Stadler P. F. 1997; Secondary structure of the 3′-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities. RNA 3:779–791
    [Google Scholar]
  42. Schlesinger S. 2001; Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 1:177–191 [CrossRef]
    [Google Scholar]
  43. Uhlirova M., Foy B. D., Beaty B. J., Olson K. E., Riddiford L. M., Jindra M. 2003; Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci U S A 100:15607–15612 [CrossRef]
    [Google Scholar]
  44. Vajdy M., Gardner J., Neidleman J., Cuadra L., Greer C., Perri S., O'Hagan D., Polo J. M. 2001; Human immunodeficiency virus type 1 Gag-specific vaginal immunity and protection after local immunizations with Sindbis virus-based replicon particles. J Infect Dis 184:1613–1616 [CrossRef]
    [Google Scholar]
  45. Varnavski A. N., Khromykh A. A. 1999; Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 255:366–375 [CrossRef]
    [Google Scholar]
  46. Varnavski A. N., Young P. R., Khromykh A. A. 2000; Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 74:4394–4403 [CrossRef]
    [Google Scholar]
  47. Wallner G., Mandl C. W., Kunz C., Heinz F. X. 1995; The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology 213:169–178 [CrossRef]
    [Google Scholar]
  48. Westaway E. G., Mackenzie J. M., Khromykh A. A. 2003; Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140
    [Google Scholar]
  49. Yun S.-I., Kim S.-Y., Rice C. M., Lee Y.-M. 2003; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80677-0
Loading
/content/journal/jgv/10.1099/vir.0.80677-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error