1887

Abstract

Hepatitis C virus C, E1, E2 and p7 proteins are cleaved from a viral polyprotein by host signal peptidases. Cleavage at the E2/p7 site is incomplete in genotype 1a strain H (resulting in E2, p7 and E2p7 species), although it has been reported to be more efficient in genotype 1b strain BK. Here, the proteolytic processing and transmembrane topology of genotype 1a strain H77c p7 was investigated when expressed in the context of E2p7. Partial processing was seen at the E2/p7 site in mammalian cells, the efficiency of which improved in the presence of nucleotide sequences downstream of p7. In insect cells, no processing at the E2/p7 site occurred and the uncleaved E2p7 species was incorporated into virus-like particles when expressed in the context of CE1E2p7c-myc. E2p7c-myc formed a heterodimer with E1, indicating that, like the well-characterized E1–E2 complex, the E1–E2p7 heterodimer may also play a functional role in virus replication. Comparison of the p7 signal peptide sequences of strains BK and H77c revealed 3 aa differences (positions 720, 733 and 742). Mutational analysis showed that the V720L change in the H77c sequence substantially increased processivity at the E2/p7 site. The p7 protein adopts a double membrane-spanning topology with both its N and C termini orientated luminally in the endoplasmic reticulum. The transmembrane topology of E2p7 species was examined by two independent means. In both cases, the C terminus of p7 in E2p7 was found to be cytoplasmically orientated, indicating that p7 adopts a dual transmembrane topology.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80737-0
2005-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/3/vir860667.html?itemId=/content/journal/jgv/10.1099/vir.0.80737-0&mimeType=html&fmt=ahah

References

  1. Baumert T. F., Ito S., Wong D. T., Liang T. J. 1998; Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72:3827–3836
    [Google Scholar]
  2. Baumert T. F., Vergalla J., Satoi J., Thomson M., Lechmann M., Herion D., Greenberg H. B., Ito S., Liang T. J. 1999; Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology 117:1397–1407 [CrossRef]
    [Google Scholar]
  3. Carrere-Kremer S., Montpellier-Pala C., Cocquerel L., Wychowski C., Penin F., Dubuisson J. 2002; Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 76:3720–3730 [CrossRef]
    [Google Scholar]
  4. Carrere-Kremer S., Montepellier C., Lorenzo L., Brulin B., Cocquerel L., Belouzard S., Penin F., Dubuisson J. 2004; Regulation of hepatitis C virus polyprotein processing by signal peptidase involves determinants at the p7 sequence junctions. J Biol Chem 279:41384–41392 [CrossRef]
    [Google Scholar]
  5. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  6. Clayton R. F., Owsianka A., Aitken J., Graham S., Bhella D., Patel A. H. 2002; Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 76:7672–7682 [CrossRef]
    [Google Scholar]
  7. Cocquerel L., Meunier J. C., Pillez A., Wychowski C., Dubuisson J. 1998; A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J Virol 72:2183–2191
    [Google Scholar]
  8. Cocquerel L., Op de Beeck A., Lambot M., Roussel J., Delgrange D., Pillez A., Wychowski C., Penin F., Dubuisson J. 2002; Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J 21:2893–2902 [CrossRef]
    [Google Scholar]
  9. Crystal A. S., Morais V. A., Pierson T. C., Pijak D. S., Carlin D., Lee V. M., Doms R. W. 2003; Membrane topology of γ -secretase component PEN-2. J Biol Chem 278:20117–20123 [CrossRef]
    [Google Scholar]
  10. Dubuisson J., Hsu H. H., Cheung R. C., Greenberg H. B., Russell D. G., Rice C. M. 1994; Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68:6147–6160
    [Google Scholar]
  11. Duvet S., Cocquerel L., Pillez A., Cacan R., Verbert A., Moradpour D., Wychowski C., Dubuisson J. 1998; Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval. J Biol Chem 273:32088–32095 [CrossRef]
    [Google Scholar]
  12. Elbers K., Tautz N., Becher P., Stoll D., Rumenapf T., Thiel H. J. 1996; Processing in the pestivirus E2–NS2 region: identification of proteins p7 and E2p7. J Virol 70:4131–4135
    [Google Scholar]
  13. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. 1985; Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616
    [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  15. Griffin S. D., Beales L. P., Clarke D. S., Worsfold O., Evans S. D., Jaeger J., Harris M. P., Rowlands D. J. 2003; The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535:34–38 [CrossRef]
    [Google Scholar]
  16. Griffin S. D., Harvey R., Clarke D. S., Barclay W. S., Harris M., Rowlands D. J. 2004; A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 85:451–461 [CrossRef]
    [Google Scholar]
  17. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C. 1991; Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 72:1323–1329 [CrossRef]
    [Google Scholar]
  18. Guirakhoo F., Bolin R. A., Roehrig J. T. 1992; The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191:921–931 [CrossRef]
    [Google Scholar]
  19. Harada T., Tautz N., Thiel H. J. 2000; E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 74:9498–9506 [CrossRef]
    [Google Scholar]
  20. Heinz F. X., Allison S. L. 2000; Structures and mechanisms in flavivirus fusion. Adv Virus Res 55:231–269
    [Google Scholar]
  21. Lambert C., Prange R. 2001; Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J Biol Chem 276:22265–22272 [CrossRef]
    [Google Scholar]
  22. Lin C., Lindenbach B. D., Pragai B. M., McCourt D. W., Rice C. M. 1994; Processing in the hepatitis C virus E2–Ns2 region: identification of P7 and two distinct E2-specific products with different C-termini. J Virol 68:5063–5073
    [Google Scholar]
  23. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  991–1042 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  24. Lundin M., Monne M., Widell A., Von Heijne G., Persson M. A. 2003; Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77:5428–5438 [CrossRef]
    [Google Scholar]
  25. Mackenzie J. M., Westaway E. G. 2001; Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75:10787–10799 [CrossRef]
    [Google Scholar]
  26. McGinnes L. W., Reitter J. N., Gravel K., Morrison T. G. 2003; Evidence for mixed membrane topology of the Newcastle disease virus fusion protein. J Virol 77:1951–1963 [CrossRef]
    [Google Scholar]
  27. Mizushima H., Hijikata M., Asabe S., Hirota M., Kimura K., Shimotohno K. 1994; Two hepatitis C virus glycoprotein E2 products with different C termini. J Virol 68:6215–6222
    [Google Scholar]
  28. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. 1982; Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863
    [Google Scholar]
  29. Owsianka A., Clayton R. F., Loomis-Price L. D., McKeating J. A., Patel A. H. 2001; Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol 82:1877–1883
    [Google Scholar]
  30. Pavlovic D., Neville D. C., Argaud O., Blumberg B., Dwek R. A., Fischer W. B., Zitzmann N. 2003; The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 100:6104–6108 [CrossRef]
    [Google Scholar]
  31. Pettersson R. F. 1991; Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol 170:67–106
    [Google Scholar]
  32. Premkumar A., Wilson L., Ewart G. D., Gage P. W. 2004; Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett 557:99–103 [CrossRef]
    [Google Scholar]
  33. Rose J. K., Buonocore L., Whitt M. A. 1991; A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques 10:520–525
    [Google Scholar]
  34. Rosenberg S. 2001; Recent advances in the molecular biology of hepatitis C virus. J Mol Biol 313:451–464 [CrossRef]
    [Google Scholar]
  35. Sakai A., Claire M. S., Faulk K., Govindarajan S., Emerson S. U., Purcell R. H., Bukh J. 2003; The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A 100:11646–11651 [CrossRef]
    [Google Scholar]
  36. Sato K., Okamoto H., Aihara S., Hoshi Y., Tanaka T., Mishiro S. 1993; Demonstration of sugar moiety on the surface of hepatitis C virions recovered from the circulation of infected humans. Virology 196:354–357 [CrossRef]
    [Google Scholar]
  37. Shimizu Y. K., Feinstone S. M., Kohara M., Purcell R. H., Yoshikura H. 1996; Hepatitis C virus: detection of intracellular virus particles by electron microscopy. Hepatology 23:205–209 [CrossRef]
    [Google Scholar]
  38. Takamizawa A., Mori C., Fuke I. 7 other authors 1991; Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol 65:1105–1113
    [Google Scholar]
  39. Yagnik A. T., Lahm A., Meola A., Roccasecca R. M., Ercole B. B., Nicosia A., Tramontano A. 2000; A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40:355–366 [CrossRef]
    [Google Scholar]
  40. Yamaga A. K., Ou J.-H. 2002; Membrane topology of the hepatitis C virus NS2 protein. J Biol Chem 277:33228–33234 [CrossRef]
    [Google Scholar]
  41. Yanagi M., Purcell R. H., Emerson S. U., Bukh J. 1997; Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A 94:8738–8743 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80737-0
Loading
/content/journal/jgv/10.1099/vir.0.80737-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error