1887

Abstract

The antibody-binding site, through which an antibody binds to its epitope, is a complex structure formed by the folding together of six complementarity-determining regions (CDRs). However, certain peptides derived from CDR sequences retain antibody specificity and function; these are know as microantibodies (MicroAbs). For example, the F58 MicroAb is a 17 residue, cyclized peptide (CDLIYYDYEEDYYFDYC) derived from CDR-H3 of F58, an IgG1 specific for the gp120 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1). Both MicroAb and IgG recognize the same epitope in the V3 loop and, despite its small size, the MicroAb neutralizes the infectivity of HIV-1 IIIB only 32-fold less efficiently on a molar basis. The advantage of MicroAbs is that their small size facilitates structure–function analysis. Here, the F58 MicroAb was investigated using alanine scanning, mass spectroscopy and surface plasmon resonance. Neutralization of infectious IIIB was generally more sensitive to alanine substitution than binding to soluble gp120. There appeared to be a division of function within the MicroAb, with some residues involved in antigen binding (alanine substitution of 11D, 12Y or 13Y abrogated both binding and neutralization), whereas others were concerned solely with neutralization (substitution of 3L, 8Y or 14F abrogated neutralization, but not binding). The MicroAb is predominantly -sheet and has strong conformational constraints that are probably essential for activity. The MicroAb and soluble gp120 formed a 1 : 1 complex, with an association rate that was threefold greater than that with IgG and a faster dissociation rate. Its equilibrium dissociation constant is 37·5-fold greater than that of IgG, in line with neutralization data. This study demonstrates how MicroAbs can make a useful contribution to the understanding of antigen–antibody interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80812-0
2005-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861791.html?itemId=/content/journal/jgv/10.1099/vir.0.80812-0&mimeType=html&fmt=ahah

References

  1. Barbas C. F. III, Hu D., Dunlop N., Sawyer L., Cababa D., Hendry R. M., Nara P. L., Burton D. R. 1994; In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc Natl Acad Sci U S A 91:3809–3813 [CrossRef]
    [Google Scholar]
  2. Basmaciogullari S., Babcock G. J., van Ryk D., Wojtowicz W., Sodroski J. 2002; Identification of conserved and variable structures in the human immunodeficiency virus gp120 glycoprotein of importance for CXCR4 binding. J Virol 76:10791–10800 [CrossRef]
    [Google Scholar]
  3. Bourgeois C., Bour J. B., Aho L. S., Pothier P. 1998; Prophylactic administration of a complementarity-determining region derived from a neutralizing monoclonal antibody is effective against respiratory syncytial virus infection in BALB/c mice. J Virol 72:807–810
    [Google Scholar]
  4. Broliden P.-A., Ljunggren K., Hinkula J., Norrby E., Åkerblom L., Wahren B. 1990; A monoclonal antibody to human immunodeficiency virus type 1 which mediates cellular cytotoxicity and neutralization. J Virol 64:936–940
    [Google Scholar]
  5. Broliden P.-A., Makitalo B., Akerblom L., Rosen J., Broliden K., Utter G., Jondal M., Norrby E., Wahren B. 1991; Identification of amino acids in the V3 region of gp120 critical for virus neutralization by human HIV-1-specific antibodies. Immunology 73:371–376
    [Google Scholar]
  6. Cabiaux V., Brasseur R., Wattiez R., Falmagne P., Ruysschaert J.-M., Goormaghtigh E. 1989; Secondary structure of diphtheria toxin and its fragments interacting with acidic liposomes studied by polarized infrared spectroscopy. J Biol Chem 264:4928–4938
    [Google Scholar]
  7. Calarese D. A., Scanlan C. N., Zwick M. B. 13 other authors 2003; Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071 [CrossRef]
    [Google Scholar]
  8. Cao J., Sullivan N., Desjardin E., Parolin C., Robinson J., Wyatt R., Sodroski J. 1997; Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 71:9808–9812
    [Google Scholar]
  9. Casset F., Roux F., Mouchet P. 10 other authors 2003; A peptide mimetic of an anti-CD4 monoclonal antibody by rational design. Biochem Biophys Res Commun 307:198–205 [CrossRef]
    [Google Scholar]
  10. Cohen J. A., Williams W. V., Weiner D. B., Geller H. M., Greene M. I. 1990; Ligand binding to the cell surface receptor for reovirus type 3 stimulates galactocerebroside expression by developing oligodendrocytes. Proc Natl Acad Sci U S A 87:4922–4926 [CrossRef]
    [Google Scholar]
  11. Davies D. R., Padlan E. A., Sheriff S. 1990; Antibody–antigen complexes. Annu Rev Biochem 59:439–473 [CrossRef]
    [Google Scholar]
  12. Edinger A. L., Ahuja M., Sung T., Baxter K. C., Haggarty B., Doms R. W., Hoxie J. A. 2000; Characterization and epitope mapping of neutralizing monoclonal antibodies produced by immunization with oligomeric simian immunodeficiency virus envelope protein. J Virol 74:7922–7935 [CrossRef]
    [Google Scholar]
  13. Fontenot J. D., Zacharopoulos V. R., Phillips D. M. 1996; Proline-rich tandem repeats of antibody complementarity-determining regions bind and neutralize human immunodeficiency virus type 1 particles. J Virol 70:6557–6562
    [Google Scholar]
  14. Fontenot J. D., Tan X., Phillips D. M. 1998; Structure-based design of peptides that recognise the CD4 binding domain of HIV-1 gp120. AIDS 12:1413–1418 [CrossRef]
    [Google Scholar]
  15. Goormaghtigh E., Cabiaux V., Ruysschaert J.-M. 1990; Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem 193:409–420 [CrossRef]
    [Google Scholar]
  16. Gorny M. K., Williams C., Volsky B. 8 other authors 2002; Human monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize human immunodeficiency virus type 1 primary isolates from various clades. J Virol 76:9035–9045 [CrossRef]
    [Google Scholar]
  17. Gorny M. K., Revesz K., Williams C. 10 other authors 2004; The V3 loop is accessible on the surface of most human immunodeficiency virus type 1 primary isolates and serves as a neutralization epitope. J Virol 78:2394–2404 [CrossRef]
    [Google Scholar]
  18. Hammache D., Yahi N., Piéroni G., Ariasi F., Tamalet C., Fantini J. 1998; Sequential interaction of CD4 and HIV-1 gp120 with a reconstituted membrane patch of ganglioside GM3: implications for the role of glycolipids as potential HIV-1 fusion cofactors. Biochem Biophys Res Commun 246:117–122 [CrossRef]
    [Google Scholar]
  19. Hoffman T. L., Doms R. W. 1999; HIV-1 envelope determinants for cell tropism and chemokine receptor use. Mol Membr Biol 16:57–65 [CrossRef]
    [Google Scholar]
  20. Hoffman N. G., Seillier-Moiseiwitsch F., Ahn J. H., Walker J. M., Swanstrom R. 2002; Variability in the human immunodeficiency virus type 1 gp120 Env protein linked to phenotype-associated changes in the V3 loop. J Virol 76:3852–3864 [CrossRef]
    [Google Scholar]
  21. Jackson N. A. C., Levi M., Wahren B., Dimmock N. J. 1999; Properties and mechanism of action of a 17 amino acid, V3 loop-specific microantibody that binds to and neutralizes human immunodeficiency virus type 1 virions. J Gen Virol 80:225–236
    [Google Scholar]
  22. Jarrin A., Andrieux A., Chapel A., Buchou T., Marguerie G. 1994; A synthetic peptide with anti-platelet activity derived from a CDR of an anti-GPIIb-IIIa antibody. FEBS Lett 354:169–172 [CrossRef]
    [Google Scholar]
  23. Javaherian K., Langlois A. J., Montefiori D. C. 7 other authors 1994; Studies of the conformation-dependent neutralizing epitopes of simian immunodeficiency virus envelope protein. J Virol 68:2624–2631
    [Google Scholar]
  24. Kazlauskaite J., Sanghera N., Sylvester I., Vénien-Bryan C., Pinheiro T. J. T. 2003; Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42:3295–3304 [CrossRef]
    [Google Scholar]
  25. Krachnarov C. P., Kayman S. C., Honnen W. J., Trochev O., Pinter A. 2001; V3-specific polyclonal antibodies affinity purified from sera of infected humans effectively neutralize primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 17:1737–1748 [CrossRef]
    [Google Scholar]
  26. Labrijn A. F., Poignard P., Raja A. 16 other authors 2003; Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol 77:10557–10565 [CrossRef]
    [Google Scholar]
  27. Labrosse B., Treboute C., Brelot A., Alizon M. 2001; Cooperation of the V1/V2 and V3 domains of human immunodeficiency virus type 1 gp120 for interaction with the CXCR4 receptor. J Virol 75:5457–5464 [CrossRef]
    [Google Scholar]
  28. Laune D., Molina F., Ferrieres G. 7 other authors 1997; Systematic exploration of the antigen binding activity of synthetic peptides isolated from the variable regions of immunoglobulins. J Biol Chem 272:30937–30944 [CrossRef]
    [Google Scholar]
  29. Levi M., Sällberg M., Rudén U., Herlyn D., Maruyama H., Wigzell H., Marks J., Wahren B. 1993; A complementarity-determining region synthetic peptide acts as a miniantibody and neutralizes human immunodeficiency virus type 1 in vitro . Proc Natl Acad Sci U S A 90:4374–4378 [CrossRef]
    [Google Scholar]
  30. Levy J. A. 1998; HIV and the Pathogenesis of AIDS . , 2nd edn. p p– 359 Herndon, VA: American Society of Microbiology;
  31. Losman B., Bolmstedt A., Schønning K., Björndal A., Westin C., Fenyö E. M., Olofsson S. 2001; Protection of neutralization epitopes in the V3 loop of oligomeric human immunodeficiency virus type 1 glycoprotein 120 by N -linked oligosaccharides in the V1 region. AIDS Res Hum Retroviruses 17:1067–1076 [CrossRef]
    [Google Scholar]
  32. Mbah H. A., Burda S., Gorny M. K., Williams C., Revesz K., Zolla-Pazner S., Nyambi P. N. 2001; Effect of soluble CD4 on exposure of epitopes on primary, intact, native human immunodeficiency virus type 1 virions of different genetic clades. J Virol 75:7785–7788 [CrossRef]
    [Google Scholar]
  33. McLain L., Dimmock N. J. 1994; Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. J Gen Virol 75:1457–1460 [CrossRef]
    [Google Scholar]
  34. Millar A. L., Jackson N. A. C., Dalton H., Jennings K. R., Levi M., Wahren B., Dimmock N. J. 1998; Rapid analysis of epitope–paratope interactions between HIV-1 and a 17-amino-acid neutralizing microantibody by electrospray ioniszation mass spectrometry. Eur J Biochem 258:164–169 [CrossRef]
    [Google Scholar]
  35. Minder D., Böni J., Schüpbach J., Gehring H. 2002; Immunophilins and HIV-1 infection. Arch Virol 147:1531–1542 [CrossRef]
    [Google Scholar]
  36. Monnet C., Laune D., Laroche-Traineau J. 11 other authors 1999; Synthetic peptides derived from the variable regions of an anti-CD4 monoclonal antibody bind to CD4 and inhibit HIV-1 promoter activation in virus-infected cells. J Biol Chem 274:3789–3796 [CrossRef]
    [Google Scholar]
  37. Moore J. P., Thali M., Jameson B. A. 12 other authors 1993; Immunochemical analysis of the gp120 surface glycoprotein of human immunodeficiency virus type 1: probing the structure of the C4 and V4 domains and the interaction of the C4 domain and the V3 loop. J Virol 67:4785–4796
    [Google Scholar]
  38. Nehete P. N., Vela E. M., Hossain M. M., Sarkar A. K., Yahi N., Fantini J., Sastry K. J. 2002; A post-CD4-binding step involving interaction of the V3 region of viral gp120 with host cell surface glycosphingolipids is common to entry and infection by diverse HIV-1 strains. Antiviral Res 56:233–251 [CrossRef]
    [Google Scholar]
  39. Parren P. W. H. I., Burton D. R. 2001; The antiviral activity of antibodies in vitro and in vivo . Adv Immunol 77:195–262
    [Google Scholar]
  40. Pinter A., Honnen W. J., Tilley S. A. 1993; Conformational changes affecting the V3 and CD4-binding domains of human immunodeficiency virus type 1 gp120 associated with Env processing and with binding of ligands to these sites. J Virol 67:5692–5697
    [Google Scholar]
  41. Poignard P., Saphire E. O., Parren P. W. H. I., Burton D. R. 2001; gp120: biologic aspects of structural features. Annu Rev Immunol 19:253–274 [CrossRef]
    [Google Scholar]
  42. Pons J., Rajpal A., Kirsch J. F. 1999; Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL10/lysozyme interaction. Protein Sci 8:958–968 [CrossRef]
    [Google Scholar]
  43. Rizzuto C., Wyatt R., Hernandez-Ramoz N., Sun Y., Kwong P. D., Hendrickson W. A., Sodroski J. 1998; A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953 [CrossRef]
    [Google Scholar]
  44. Saphire E. O., Parren P. W. H. I., Pantophlet R. 7 other authors 2001; Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293:1155–1159 [CrossRef]
    [Google Scholar]
  45. Smith J. W., Hu D., Satterthwait A. C., Pinz-Sweeney S., Barbas C. F. III 1994; Building synthetic antibodies as adhesive ligands for integrins. J Biol Chem 269:32788–32795
    [Google Scholar]
  46. Thali M., Furman C., Wahren B., Posner M., Ho D. D., Robinson J., Sodroski J. 1992; Cooperativity of neutralizing antibodies directed against the V3 and CD4 binding regions of the human immunodeficiency virus gp120 envelope glycoprotein. J Acquir Immune Defic Syndr 5:591–599
    [Google Scholar]
  47. Welling G. W., Geurts T., van Gorkum J., Damhof R. A., Drijfhout J. W., Bloemhoff W., Welling-Wester S. 1990; Synthetic antibody fragment as ligand in immunoaffinity chromatography. J Chromatogr 512:337–343 [CrossRef]
    [Google Scholar]
  48. Welling G. W., van Gorkum J., Damhof R. A., Drijfhout J. W., Bloemhoff W., Welling-Wester S. 1991; A ten-residue fragment of an antibody (mini-antibody) directed against lysozyme as ligand in immunoaffinity chromatography. J Chromatogr 548:235–242 [CrossRef]
    [Google Scholar]
  49. Willey R. L., Ross E. K., Buckler-White A. J., Theodore T. S., Martin M. A. 1989; Functional interaction of constant and variable domains of human immunodeficiency virus type 1 gp120. J Virol 63:3595–3600
    [Google Scholar]
  50. Williams W. V., Guy H. R., Rubin D., Robey F., Myers J. N., Kieber-Emmons T., Weiner D. B., Greene M. I. 1988; Sequences of the cell-attachment sites of reovirus type 3 and its anti-idiotypic/antireceptor antibody: modeling of their three-dimensional structures. Proc Natl Acad Sci U S A 85:6488–6492 [CrossRef]
    [Google Scholar]
  51. Williams W. V., London S. D., Weiner D. B., Wadsworth S., Berzofsky J. A., Robey F., Rubin D. H., Greene M. I. 1989a; Immune response to a molecularly defined internal image idiotope. J Immunol 142:4392–4400
    [Google Scholar]
  52. Williams W. V., Moss D. A., Kieber-Emmons T., Cohen J. A., Myers J. N., Weiner D. B., Greene M. I. 1989b; Development of biologically active peptides based on antibody structure. Proc Natl Acad Sci U S A 86:5537–5541 [CrossRef]
    [Google Scholar]
  53. Williams W. V., Kieber-Emmons T., VonFeldt J., Greene M. I., Weiner D. B. 1991a; Design of bioactive peptides based on antibody hypervariable region structures. Development of conformationally constrained and dimeric peptides with enhanced affinity. J Biol Chem 266:5182–5190
    [Google Scholar]
  54. Williams W. V., Kieber-Emmons T., Weiner D. B., Rubin D. H., Greene M. I. 1991b; Contact residues and predicted structure of the reovirus type 3-receptor interaction. J Biol Chem 266:9241–9250
    [Google Scholar]
  55. Winter G., Milstein C. 1991; Man-made antibodies. Nature 349:293–299 [CrossRef]
    [Google Scholar]
  56. Yang W.-P., Green K., Pinz-Sweeney S., Briones A. T., Burton D. R., Barbas C. F. III 1995; CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 254:392–403 [CrossRef]
    [Google Scholar]
  57. Zhang P. F., Bouma P., Park E. J., Margolick J. B., Robinson J. E., Zolla-Pazner S., Flora M. N., Quinnan G. V. Jr 2002; A variable region 3 (V3) mutation determines a global neutralization phenotype and CD4-independent infectivity of a human immunodeficiency virus type 1 envelope associated with a broadly cross-reactive, primary virus-neutralizing antibody response. J Virol 76:644–655 [CrossRef]
    [Google Scholar]
  58. Zhang M.-Y., Shu Y., Rudolph D., Prabakaran P., Labrijn A. F., Zwick M. B., Lal R. B., Dimitrov D. S. 2004; Improved breadth and potency of an HIV-1-neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J Mol Biol 335:209–219 [CrossRef]
    [Google Scholar]
  59. Zwick M. B., Parren P. W. H. I., Saphire E. O., Church S., Wang M., Scott J. K., Dawson P. E., Wilson I. A., Burton D. R. 2003; Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120. J Virol 77:5863–5876 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80812-0
Loading
/content/journal/jgv/10.1099/vir.0.80812-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error