1887

Abstract

Rotavirus RRV gene 11 encodes two non-structural proteins, NSP5 and NSP6. NSP5 is a phosphorylated non-structural protein that binds single- and double-stranded RNA in a non-specific manner. Transient expression of this protein in uninfected cells has provided evidence for its participation in the formation of electron-dense cytoplasmic structures, known as viroplasms, which are thought to be key structures for the replication of the virus. NSP6 is a protein of unknown function that seems not to be essential for virus replication in cell culture. To study the function of NSP5 in the context of a viral infection, the expression of RRV gene 11 was silenced by RNA interference. Reduction in the synthesis of NSP5, as shown by immunoblot and immunofluorescence assays, correlated with a reduction in the number and size of viroplasms and with an altered intracellular distribution of other viroplasm-associated proteins. Silencing of gene 11 also resulted in a reduced synthesis of viral RNA(+) and double-stranded RNA and of all viral proteins, as well as in a decreased production of infectious virus. A similar phenotype was observed when the NSP5 coding gene of the lapine rotavirus strain Alabama was silenced. The fact that the NSP5 gene of rotavirus Alabama lacks the AUG initiator codon for a complete NSP6 protein, suggests that the described phenotype in gene 11-silenced cells is mostly due to the absence of NSP5. The data presented in this work suggest that NSP5 is a key protein during the replication cycle of rotaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80827-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861609.html?itemId=/content/journal/jgv/10.1099/vir.0.80827-0&mimeType=html&fmt=ahah

References

  1. Afrikanova I., Miozzo M. C., Giambiagi S., Burrone O. R. 1996; Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065 [CrossRef]
    [Google Scholar]
  2. Arias C. F., Dector M. A., Segovia L., Lopez T., Camacho M., Isa P., Espinosa R., Lopez S. 2004; RNA silencing of rotavirus gene expression. Virus Res 102:43–51 [CrossRef]
    [Google Scholar]
  3. Berois M., Sapin C., Erk I., Poncet D., Cohen J. 2003; Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763 [CrossRef]
    [Google Scholar]
  4. Blackhall J., Muñoz M., Fuentes A., Magnusson G. 1998; Analysis of rotavirus nonstructural protein NSP5 phosphorylation. J Virol 72:6398–6405
    [Google Scholar]
  5. Campagna M., Vascotto F., Eichwald C., Burrone O. R. 2003; Interfering with rotavirus NSP5. In Eighth International Symposium on Double Stranded RNA Viruses Italy: Castelvecchio Pascoli (Lucca;
    [Google Scholar]
  6. Chnaiderman Xiao J., Barro M., Spencer E. 2002; NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells. Arch Virol 147:1899–1911 [CrossRef]
    [Google Scholar]
  7. Dector M. A., Romero P., López S., Arias C. F. 2002; Rotavirus gene silencing by small interfering RNAs. EMBO Rep 3:1175–1180 [CrossRef]
    [Google Scholar]
  8. Eichwald C., Vascotto F., Fabbretti E., Burrone O. R. 2002; Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76:3461–3470 [CrossRef]
    [Google Scholar]
  9. Eichwald C., Jacob G., Muszynski B., Allende J. E., Burrone O. R. 2004; Uncoupling substrate and activation functions of rotavirus NSP5: phosphorylation of Ser-67 by casein kinase 1 is essential for hyperphosphorylation. Proc Natl Acad Sci U S A 101:16304–16309 [CrossRef]
    [Google Scholar]
  10. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001; Duplex of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 [CrossRef]
    [Google Scholar]
  11. Estes M. K. 2001; Rotaviruses and their replication. In Fields Virology , 4th edn. pp  1747–1785 Edited by Knipe D. N., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  12. Fabbretti E., Afrikanova I., Vascotto F., Burrone O. R. 1999; Two non-structural rotaviral proteins, NSP2 and NSP5, form viroplasm-like structures in vitro . J Gen Virol 80:333–339
    [Google Scholar]
  13. González S. A., Burrone O. R. 1991; Rotavirus NS26 is modified by addition of single O -linked residues of N -acetylglucosamine. Virology 182:8–16 [CrossRef]
    [Google Scholar]
  14. González R. A., Espinosa R., Romero P., López S., Arias C. F. 2000; Relative localization of viroplasmic and endoplasmic reticulum-resident rotavirus proteins in infected cells. Arch Virol 145:1963–1973 [CrossRef]
    [Google Scholar]
  15. Herring A. J., Inglis N. F., Ojeh C. K., Snodgrass D. R., Menzies J. D. 1982; Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol 16:473–477
    [Google Scholar]
  16. Kim D. H., Longo M., Han Y., Lundberg P., Cantin E., Rossi J. J. 2004; Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22:321–325 [CrossRef]
    [Google Scholar]
  17. López T., Camacho M., Zayas M., Nájera R., Sánchez R., Arias C. F., López S. 2005; Silencing the morphogenesis of rotavirus. J Virol 79:184–192 [CrossRef]
    [Google Scholar]
  18. Mattion N. M., Mitchell D. B., Both G. W., Estes M. K. 1991; Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology 181:295–304 [CrossRef]
    [Google Scholar]
  19. Mohan K. V. K., Atreya C. D. 2001; Nucleotide sequence analysis of rotavirus gene 11 from two tissue culture-adapted ATCC strains, RRV and Wa. Virus Genes 23:321–329 [CrossRef]
    [Google Scholar]
  20. Mohan K. V. K., Muller J., Som I., Atreya C. D. 2003; The N- and C-terminal regions of rotavirus NSP5 are critical determinants for the formation of viroplasm-like structures independent of NSP2. J Virol 77:12184–12192 [CrossRef]
    [Google Scholar]
  21. Nejmeddine M., Trugnan G., Sapin C., Kohli E., Svensson L., López S., Cohen J. 2000; Rotavirus spike protein VP4 is present at the plasma membrane and is associated with microtubules in infected cells. J Virol 74:3313–3320 [CrossRef]
    [Google Scholar]
  22. Nibert M. L., Schiff L. A. 2001; Reovirus and their replication. In Fields Virology , 4th edn. pp  1679–1728 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. Pando V., Isa P., Arias C. F., Lopez S. 2002; Influence of calcium on the early steps of rotavirus infection. Virology 295:190–200 [CrossRef]
    [Google Scholar]
  24. Patton J. T. 1995; Structure and function of the rotavirus RNA-binding proteins. J Gen Virol 76:2633–2644 [CrossRef]
    [Google Scholar]
  25. Patton J. T., Kearny K., Taraporewala Z. F. 2003; Rotavirus genome replication: role of the RNA-binding proteins. In Viral Gastroenteritis pp  165–184 Edited by Desselberger U., Gray J. Amsterdam: Elsevier;
    [Google Scholar]
  26. Persengiev S. P., Zhu X., Green M. R. 2004; Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs. RNA 10:12–18 [CrossRef]
    [Google Scholar]
  27. Petrie B. L., Greenberg H. B., Graham D. Y., Estes M. K. 1984; Ultrastructural localization of rotavirus antigens using coloidal gold. Virus Res 1:133–152 [CrossRef]
    [Google Scholar]
  28. Silvestri L. S., Taraporewala Z. F., Patton J. T. 2004; Rotavirus replication plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 78:7763–7774 [CrossRef]
    [Google Scholar]
  29. Sledz C. A., Holko M., de Veer M. J., Silverman R. H., Williams B. R. 2003; Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839 [CrossRef]
    [Google Scholar]
  30. Taraporewala Z. F., Patton J. T. 2004; Nonstructural proteins involved in genome packaging and replication of rotaviruses and others members of the Reoviridae. Virus Res 101:57–66 [CrossRef]
    [Google Scholar]
  31. Torres-Vega M. A., González R. A., Duarte M., Poncet D., López S., Arias C. F. 2000; The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830
    [Google Scholar]
  32. Vascotto F., Campagna M., Visintin M., Cattaneo A., Burrone O. R. 2004; Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle. J Gen Virol 85:3285–3290 [CrossRef]
    [Google Scholar]
  33. Vende P., Taraporewala Z. F., Patton J. T. 2002; RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA. J Virol 76:5291–5299 [CrossRef]
    [Google Scholar]
  34. Winer J., Jung C. K. S., Shackel I., Williams M. 1999; Development and validation of a real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49 [CrossRef]
    [Google Scholar]
  35. Zarate S., Cuadras M. A., Espinosa R., Romero P., Juarez K. O., Camacho-Nuez M., Arias C. F., Lopez S. 2003; Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80827-0
Loading
/content/journal/jgv/10.1099/vir.0.80827-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error