1887

Abstract

is expressed late during infection of cultured lepidopteran insect cells by . The gene product is predicted to have a molecular mass of 11 161 Da and consists of a hydrophobic N terminus and a single ‘peritrophin-A’-like domain, connected by a short region of charged amino acids. An deletion mutant and its parental wild-type virus were compared for differences in virulence by both oral and intrahaemocoelic routes of infection. It was found that the mutant was significantly less virulent in larvae of all three host species tested (, and ) when occlusions were administered orally, but not when isolated occlusion-derived virus (ODV) was administered orally or budded virus was administered intrahaemocoelically. ODV yields were the same from equal numbers of mutant and wild-type occlusions, and nucleocapsid-distribution frequencies within the two ODV populations were the same, eliminating these features as explanations for the observed differences in virulence. Comparison of pathogenesis, as revealed by expression from identical reporter-gene cassettes in the mutant and wild-type virus, indicated that the mutant was less efficient at establishing primary infection in midgut cells; otherwise, it exhibited infection kinetics identical to those of wild-type virus. Ac150, therefore, can be considered a infection factor that mediates, but is not essential for, oral infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80930-0
2005-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861619.html?itemId=/content/journal/jgv/10.1099/vir.0.80930-0&mimeType=html&fmt=ahah

References

  1. Adams J. R., McClintock J. T. 1991; Baculoviridae . Nuclear polyhedrosis viruses. Part 1: Nuclear polyhedrosis viruses of insects. In Atlas of Invertebrate Viruses pp  87–204 Edited by Adams J. R., Bonami J. R. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D. H., Summers M. D. 2003; Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A 100:9797–9802 [CrossRef]
    [Google Scholar]
  3. Briese D. T. 1986; Insect resistance to baculoviruses. In The Biology of Baculoviruses vol II pp  237–263 Edited by Federici B. A., Granados R. R. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Dall D., Luque T., O'Reilly D. 2001; Insect-virus relationships: sifting by informatics. Bioessays 23:184–193 [CrossRef]
    [Google Scholar]
  5. Engelhard E. K., Volkman L. E. 1995; Developmental resistance in fourth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus. Virology 209:384–389 [CrossRef]
    [Google Scholar]
  6. Engelhard E. K., Kam-Morgan L. N. W., Washburn J. O., Volkman L. E. 1994; The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91:3224–3227 [CrossRef]
    [Google Scholar]
  7. Granados R. R., Williams K. A. 1986; In vivo infection and replication of baculoviruses. In The Biology of Baculoviruses vol. I pp  89–108 Edited by Granados R. R., Federici B. A. Boca Raton, FL: CRC Press;
    [Google Scholar]
  8. Haas-Stapleton E. J., Washburn J. O., Volkman L. E. 2004; P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J Virol 78:6786–6791 [CrossRef]
    [Google Scholar]
  9. Hynes R. O. 2002; Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687 [CrossRef]
    [Google Scholar]
  10. Inoue H., Miyagawa M. 1978; Regeneration of midgut epithelial cells in the silkworm, Bombyx mori , infected with viruses. J Invertebr Pathol 32:373–380 [CrossRef]
    [Google Scholar]
  11. Keddie B. A., Aponte G. W., Volkman L. E. 1989; The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 243:1728–1730 [CrossRef]
    [Google Scholar]
  12. Kikhno I., Gutiérrez S., Croizier L., Croizier G., López Ferber M. 2002; Characterization of pif , a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J Gen Virol 83:3013–3022
    [Google Scholar]
  13. Kuzio J., Jaques R., Faulkner P. 1989; Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763 [CrossRef]
    [Google Scholar]
  14. Lapointe R., Popham H. J. R., Straschil U., Goulding D., O'Reilly D. R., Olszewski J. A. 2004; Characterization of two Autographa californica nucleopolyhedrovirus proteins, Ac145 and Ac150, which affect oral infectivity in a host-dependent manner. J Virol 78:6439–6448 [CrossRef]
    [Google Scholar]
  15. Milks M. L., Washburn J. O., Willis L. G., Volkman L. E., Theilmann D. A. 2003; Deletion of pe38 attenuates AcMNPV genome replication, budded virus production, and virulence in Heliothis virescens . Virology 310:224–234 [CrossRef]
    [Google Scholar]
  16. Ohkawa T. 1997; Identification and characterization of genes of the baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) involved in viral pathogenesis . PhD thesis University of California; Davis, CA, USA:
  17. Pijlman G. P., Pruijssers A. J. P., Vlak J. M. 2003; Identification of pif-2 , a third conserved baculovirus gene required for per os infection of insects. J Gen Virol 84:2041–2049 [CrossRef]
    [Google Scholar]
  18. Smith G. E., Summers M. D. 1978; Analysis of baculovirus genomes with restriction endonucleases. Virology 89:517–527 [CrossRef]
    [Google Scholar]
  19. Summers M. D., Smith G. E. 1987; A manual of methods for baculovirus vectors and insect cell culture procedures. Tex Agric Exp Stn Bull 15551–57
    [Google Scholar]
  20. Takahashi M., Tsuda T., Ikeda Y., Honke K., Taniguchi N. 2004; Role of N-glycans in growth factor signaling. Glycoconj J 20:207–212
    [Google Scholar]
  21. Tellam R. L., Wijffels G., Willadsen P. 1999; Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101 [CrossRef]
    [Google Scholar]
  22. Volkman L. E., Goldsmith P. A. 1982; Generalized immunoassay for Autographa californica nuclear polyhedrosis virus infectivity in vitro. Appl Environ Microbiol 44:227–233
    [Google Scholar]
  23. Wang P., Granados R. R. 2000; Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135–143 [CrossRef]
    [Google Scholar]
  24. Washburn J. O., Kirkpatrick B. A., Volkman L. E. 1995; Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens . Virology 209:561–568 [CrossRef]
    [Google Scholar]
  25. Washburn J. O., Kirkpatrick B. A., Haas-Stapleton E., Volkman L. E. 1998; Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Control 11:58–69 [CrossRef]
    [Google Scholar]
  26. Washburn J. O., Lyons E. H., Haas-Stapleton E. J., Volkman L. E. 1999; Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni . J Virol 73:411–416
    [Google Scholar]
  27. Washburn J. O., Chan E. Y., Volkman L. E., Aumiller J. J., Jarvis D. L. 2003; Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens . J Virol 77:280–290 [CrossRef]
    [Google Scholar]
  28. Zhang J.-H., Washburn J. O., Jarvis D. L., Volkman L. E. 2004; Autographa californica M nucleopolyhedrovirus early GP64 synthesis mitigates developmental resistance in orally infected noctuid hosts. J Gen Virol 85:833–842 [CrossRef]
    [Google Scholar]
  29. Zuidema D., Schouten A., Usmany M., Maule A. J., Belsham G. J., Roosien J., Klinge-Roode E. C., van Lent J. W. M., Vlak J. M. 1990; Expression of cauliflower mosaic virus gene I in insect cells using a novel polyhedrin-based baculovirus expression vector. J Gen Virol 71:2201–2209 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80930-0
Loading
/content/journal/jgv/10.1099/vir.0.80930-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error