1887

Abstract

The capacity of herpes simplex virus type 1 (HSV-1) to replicate decreases tremendously when animal cell cultures are exposed to ligands of both the alpha/beta interferon (IFN-/) receptor and IFN- receptor prior to inoculation with low m.o.i.s of HSV-1. However, the available evidence provides no insight into the possible mechanisms by which co-activation of the IFN-/- and IFN--signalling pathways produces this effect. Therefore, it has not been possible to differentiate between whether these observations represent an important model of host immunological suppression of HSV-1 infection or an irrelevant laboratory phenomenon. Therefore, the current study was initiated to determine whether co-activation of the host cell's IFN-/ and IFN- pathways either (i) induced death of HSV-1-infected cells such that virus replication was unable to occur; or (ii) disrupted one or more steps in the process of HSV-1 replication. To this end, multiple steps in HSV-1 infection were compared in populations of Vero cells infected with HSV-1 strain KOS (m.o.i. of 2·5) and exposed to ligands of the IFN-/ receptor, the IFN- receptor or both. The results demonstrated that IFN- and IFN- interact in a synergistic manner to block the efficient synthesis of viral DNA and nucleocapsid formation in HSV-1-infected cells and do so without compromising host-cell viability. It was inferred that IFN-mediated suppression of HSV-1 replication may be a central mechanism by which the host immune system limits the spread of HSV-1 infection .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80979-0
2005-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862421.html?itemId=/content/journal/jgv/10.1099/vir.0.80979-0&mimeType=html&fmt=ahah

References

  1. Balish M. J., Abrams M. E., Pumfery A. M., Brandt C. R. 1992; Enhanced inhibition of herpes simplex virus type 1 growth in human corneal fibroblasts by combinations of interferon- α and - γ . J Infect Dis 166:1401–1403 [CrossRef]
    [Google Scholar]
  2. Cerveny M., Hessefort S., Yang K., Cheng G., Gross M., He B. 2003; Amino acid substitutions in the effector domain of the γ 134.5 protein of herpes simplex virus 1 have differential effects on viral response to interferon- α . Virology 307:290–300 [CrossRef]
    [Google Scholar]
  3. Chen S. H., Oakes J. E., Lausch R. N. 1994; Synergistic anti-herpes effect of TNF- α and IFN- γ in human corneal epithelial cells compared with that in corneal fibroblasts. Antiviral Res 25:201–213 [CrossRef]
    [Google Scholar]
  4. DeLuca N. A., Schaffer P. A. 1987; Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucleic Acids Res 15:4491–4511 [CrossRef]
    [Google Scholar]
  5. DeLuca N. A., McCarthy A. M., Schaffer P. A. 1985; Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 56:558–570
    [Google Scholar]
  6. Desloges N., Rahaus M., Wolff M. H. 2005; Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon. J Gen Virol 86:1–6 [CrossRef]
    [Google Scholar]
  7. Elion G. B. 1983; The biochemistry and mechanism of action of acyclovir. J Antimicrob Chemother 12 (Suppl. B):9–17
    [Google Scholar]
  8. Foster T. P., Rybachuk G. V., Alvarez X., Borkhsenious O., Kousoulas K. G. 2003; Overexpression of gK in gK-transformed cells collapses the Golgi apparatus into the endoplasmic reticulum inhibiting virion egress, glycoprotein transport, and virus-induced cell fusion. Virology 317:237–252 [CrossRef]
    [Google Scholar]
  9. Foster T. P., Melancon J. M., Baines J. D., Kousoulas K. G. 2004; The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 78:5347–5357 [CrossRef]
    [Google Scholar]
  10. Halford W. P., Halford K. J., Pierce A. T. 2005a; Mathematical analysis demonstrates that interferons- β and - γ interact in a multiplicative manner to disrupt herpes simplex virus replication. J Theor Biol 234:439–454 [CrossRef]
    [Google Scholar]
  11. Halford W. P., Maender J. L., Gebhardt B. M. 2005b; Re-evaluating the role of natural killer cells in innate resistance to herpes simplex virus type 1. Virol J (in press)
    [Google Scholar]
  12. Härle P., Sainz B. Jr, Carr D. J. J., Halford W. P. 2002; The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon- α / β . Virology 293:295–304 [CrossRef]
    [Google Scholar]
  13. Hubenthal-Voss J., Houghten R. A., Pereira L., Roizman B. 1988; Mapping of functional and antigenic domains of the α 4 protein of herpes simplex virus 1. J Virol 62:454–462
    [Google Scholar]
  14. Khanna K. M., Bonneau R. H., Kinchington P. R., Hendricks R. L. 2003; Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18:593–603 [CrossRef]
    [Google Scholar]
  15. Leib D. A., Machalek M. A., Williams B. R. G., Silverman R. H., Virgin H. W. 2000; Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U S A 97:6097–6101 [CrossRef]
    [Google Scholar]
  16. Luker G. D., Prior J. L., Song J., Pica C. M., Leib D. A. 2003; Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol 77:11082–11093 [CrossRef]
    [Google Scholar]
  17. Malik A. K., Martinez R., Muncy L., Carmichael E. P., Weller S. K. 1992; Genetic analysis of the herpes simplex virus type 1 UL9 gene: isolation of a lacZ insertion mutant and expression in eukaryotic cells. Virology 190:702–715 [CrossRef]
    [Google Scholar]
  18. Mossman K. L., Smiley J. R. 2002; Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol 76:1995–1998 [CrossRef]
    [Google Scholar]
  19. Mossman K. L., Saffran H. A., Smiley J. R. 2000; Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74:2052–2056 [CrossRef]
    [Google Scholar]
  20. Park S.-Y., Seol J.-W., Lee Y.-J. 9 other authors 2004; IFN- γ enhances TRAIL-induced apoptosis through IRF-1. Eur J Biochem 271:4222–4228 [CrossRef]
    [Google Scholar]
  21. Poon A. P. W., Silverstein S. J., Roizman B. 2002; An early regulatory function required in a cell type-dependent manner is expressed by the genomic but not the cDNA copy of the herpes simplex virus 1 gene encoding infected cell protein 0. J Virol 76:9744–9755 [CrossRef]
    [Google Scholar]
  22. Sainz B. Jr, Halford W. P. 2002; Alpha/beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 76:11541–11550 [CrossRef]
    [Google Scholar]
  23. Sainz B. Jr, Mossel E. C., Peters C. J., Garry R. F. 2004; Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329:11–17 [CrossRef]
    [Google Scholar]
  24. Sainz B. Jr, LaMarca H. L., Garry R. F., Morris C. A. 2005; Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma. Virol J 2:14 [CrossRef]
    [Google Scholar]
  25. Schang L. M., Phillips J., Schaffer P. A. 1998; Requirement for cellular cyclin-dependent kinases in herpes simplex virus replication and transcription. J Virol 72:5626–5637
    [Google Scholar]
  26. Simmons A., Tscharke D. C. 1992; Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 175:1337–1344 [CrossRef]
    [Google Scholar]
  27. Smith K. O. 1964; Relationship between the envelope and the infectivity of herpes simplex virus. Proc Soc Exp Biol Med 115:814–816 [CrossRef]
    [Google Scholar]
  28. Soboleski M. R., Oaks J., Halford W. P. 2005; Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19:440–442
    [Google Scholar]
  29. Takaoka A., Hayakawa S., Yanai H. 8 other authors 2003; Integration of interferon- α / β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523 [CrossRef]
    [Google Scholar]
  30. Tallarida R. J. 2001; Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872
    [Google Scholar]
  31. Tallarida R. J., Stone D. J. Jr, Raffa R. B. 1997; Efficient designs for studying synergistic drug combinations. Life Sci 61:PL417–PL425
    [Google Scholar]
  32. Theil D., Derfuss T., Paripovic I., Herberger S., Meinl E., Schueler O., Strupp M., Arbusow V., Brandt T. 2003; Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 163:2179–2184 [CrossRef]
    [Google Scholar]
  33. Vollstedt S., Arnold S., Schwerdel C., Franchini M., Alber G., Di Santo J. P., Ackermann M., Suter M. 2004; Interplay between alpha/beta and gamma interferons with B, T, and natural killer cells in the defense against herpes simplex virus type 1. J Virol 78:3846–3850 [CrossRef]
    [Google Scholar]
  34. Warner M. S., Geraghty R. J., Martinez W. M., Montgomery R. I., Whitbeck J. C., Xu R., Eisenberg R. J., Cohen G. H., Spear P. G. 1998; A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246:179–189 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80979-0
Loading
/content/journal/jgv/10.1099/vir.0.80979-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error