1887

Abstract

Swine vesicular disease virus (SVDV) is a picornavirus closely related to the human pathogen coxsackievirus B5. In common with other picornaviruses, the 5′ untranslated region (5′ UTR) of SVDV contains an internal ribosomal entry site (IRES) that plays an important role in cap-independent translation. The aim of this study was to use RT-PCR and sequencing to characterize a fragment of the 5′ UTR encompassing the entire IRES. Sequence analysis demonstrated high nucleotide identities within the IRES between 33 representative SVDV isolates. These data support the choice of this region as a diagnostic target and provide information for the improvement of laboratory-based molecular assays to detect SVDV. In contrast to the relative conservation of the IRES element, there was considerable nucleotide variability in the spacer region located between the cryptic AUG at the 3′ end of the IRES and the initiation codon of the polyprotein. Interestingly, 11 SVDV isolates had block deletions of between 6 and 125 nt in this region. Nine of these isolates were of recent European origin and were phylogenetically closely related. growth studies showed that selected isolates with these deletions had a significantly reduced plaque diameter and grew to a significantly lower titre relative to an isolate with a full-length 5′ UTR. Further work is required to define the significance of these deletions and to assess whether they impact on the pathogenesis of SVD.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80988-0
2005-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2753.html?itemId=/content/journal/jgv/10.1099/vir.0.80988-0&mimeType=html&fmt=ahah

References

  1. Beales L. P., Holzenburg A., Rowland D. J. 2003; Viral internal ribosome entry site structures segregate into two distinct morphologies. J Virol 77:6574–6579 [CrossRef]
    [Google Scholar]
  2. Belak S., Thoren P. 2001; Molecular diagnosis of animal diseases: some experiences over the past decade. Expert Rev Mol Diagn 1:434–443 [CrossRef]
    [Google Scholar]
  3. Belsham G. J., Jackson R. J. 2000; Translational control of gene expression. In Translation Initiation on Picornavirus RNA pp  869–900 Edited by Sonenberg N., Hershey J. W. B., Matthews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Brocchi E., Zhang G., Knowles N. J., Wilsden G., McCauley J. W., Marquardt O., Ohlinger V. F., De Simone F. 1997; Molecular epidemiology of recent outbreaks of swine vesicular disease: two genetically and antigenically distant variants in Europe, 1987–1994. Epidemiol Infect 118:51–61 [CrossRef]
    [Google Scholar]
  5. Callahan P. L., Mizutani S., Colonno R. J. 1985; Molecular cloning and complete sequence determination of RNA genome of human rhinovirus 14. Proc Natl Acad Sci U S A 82:732–736 [CrossRef]
    [Google Scholar]
  6. De Castro M. P. 1964; Behaviour of the foot and mouth disease virus in cell cultures: susceptibility of the IB-RS-2 line. Arch Inst Biol (Sao Paulo 31:63–78
    [Google Scholar]
  7. Dekker A., Moonen P., deBoer-Luijtze E. A., Terpstra C. 1995; Pathogenesis of swine vesicular disease after exposure of pigs to an infected environment. Vet Microbiol 45:243–250 [CrossRef]
    [Google Scholar]
  8. Fallacara F., Pacciarini M. L., Bugnetti M., Berlinzani A., Brocchi E. 2000; Detection of swine vesicular disease virus in faeces samples by immune-PCR assay. In Proceedings of the 5th International Congress of the European Society for Veterinary Virology Brescia, Italy: 27–30 August 2000 pp  173–174 Edited by Brocchi E., Lavazza A.
    [Google Scholar]
  9. Ferris N. P., Dawson M. 1988; Routine application of enzyme-linked immunosorbent assay in comparison with complement fixation for the diagnosis of foot-and-mouth and swine vesicular diseases. Vet Microbiol 6:201–209
    [Google Scholar]
  10. Garland A. J. M., Mann J. A. 1974; Attempts to infect pigs with coxsackie virus type B5. J Hyg 73:85–96 [CrossRef]
    [Google Scholar]
  11. Gmyl A. P., Pilipenko E. V., Maslova S. V., Beloy G. A., Agol V. I. 1993; Functional and genetic plasticities of the poliovirus genome: quasi-infectious RNAs modified in the 5′-untranslated region yield a variety of pseudorevertants. J Virol 67:6309–6316
    [Google Scholar]
  12. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. J Gen Virol 70:919–934 [CrossRef]
    [Google Scholar]
  13. Inoue T., Yamaguchi S., Kanno T., Sugita S., Saeki T. 1993; The complete nucleotide sequence of a pathogenic swine vesicular disease virus isolated in Japan (J1′73) and phylogenetic analysis. Nucleic Acids Res 21:3896 [CrossRef]
    [Google Scholar]
  14. Inoue T., Alexandersen S., Clark A. T., Murphy C., Quan M., Reid S. M., Sakoda Y., Johns H. L., Belsham G. J. 2005; Importance of arginine 20 of the swine vesicular disease virus 2A protease for activity and virulence. J Virol 79:428–440 [CrossRef]
    [Google Scholar]
  15. Jackson R. J., Howell M. T., Kaminski A. 1990; The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 15:477–483 [CrossRef]
    [Google Scholar]
  16. Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. 1996; A network of heterogenous hydrogen bonds in GNRA tetraloops. J Mol Biol 264:968–980 [CrossRef]
    [Google Scholar]
  17. Kanno T., Mackay D., Inoue T. 7 other authors 1999; Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. J Virol 73:2710–2716
    [Google Scholar]
  18. Le S. Y., Maizel J. V. 1998; Evolution of a common structural core in the internal ribosome entry sites of picornavirus. Virus Genes 16:25–38 [CrossRef]
    [Google Scholar]
  19. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940 [CrossRef]
    [Google Scholar]
  20. Nardelli L., Lodetti G., Gualandi G. L., Burrows R., Goodridge D., Brown F., Cartwright B. 1968; A foot-and-mouth disease syndrome in pigs caused by an enterovirus. Nature 219:1275–1276 [CrossRef]
    [Google Scholar]
  21. Pelletier J., Flynn M. E., Kaplan G., Racaniello V., Sonenberg N. 1988; Mutational analysis of upstream AUG codons in poliovirus RNA. J Virol 62:4486–4492
    [Google Scholar]
  22. Pilipenko E. V., Gmyl A. P., Agol V. I. 1995; A model for rearrangements in RNA genomes. Nucleic Acids Res 23:1870–1875 [CrossRef]
    [Google Scholar]
  23. Proutski V., Holmes E. 1998; swan: sliding window analysis of nucleotide sequence variability. Bioinformatics 14:467–468 [CrossRef]
    [Google Scholar]
  24. Rebel J. M., Leendertse C. H., Dekker A., van Poelwijk F., Moormann R. J. 2000; Construction of a full-length infectious cDNA clone of swine vesicular disease virus strain NET/1/92 and analysis of new antigenic variants derived from it. J Gen Virol 81:2763–2769
    [Google Scholar]
  25. Reid S. M., Ferris N. P., Hutchings G. H., King D. P., Alexandersen S. 2004a; Evaluation of real-time reverse transcription polymerase chain reaction assays for the detection of swine vesicular disease virus. J Virol Methods 116:169–176 [CrossRef]
    [Google Scholar]
  26. Reid S. M., Paton D. J., Wilsden G., Hutchings G. H., King D. P., Ferris N. P., Alexandersen S. 2004b; Use of automated real-time RT-PCR to monitor experimental swine vesicular disease virus infection in pigs. J Comp Pathol 131:308–317 [CrossRef]
    [Google Scholar]
  27. Sakoda Y., Ross-Smith N., Inoue T., Belsham G. J. 2001; An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap- and internal ribosome entry site-dependent protein synthesis. J Virol 75:10643–10650 [CrossRef]
    [Google Scholar]
  28. Seechurn P., Knowles N. J., McCauley J. W. 1990; The complete nucleotide sequence of a pathogenic swine vesicular disease virus. Virus Res 16:255–274 [CrossRef]
    [Google Scholar]
  29. Semler B. L. 2004; Poliovirus proves IRES-istible in vivo. J Clin Invest 113:1678–1681 [CrossRef]
    [Google Scholar]
  30. Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. 1989; New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol 207:379–392 [CrossRef]
    [Google Scholar]
  31. Slobodskaya O. R., Gmyl A. P., Maslova S. V., Tolskaya E. A., Viktorova E. G., Agol V. I. 1996; Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator. Virology 221:141–150 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Zhang G., Haydon D. T., Knowles N. J., McCauley J. W. 1999; Molecular evolution of swine vesicular disease virus. J Gen Virol 80:639–651
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80988-0
Loading
/content/journal/jgv/10.1099/vir.0.80988-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error