1887

Abstract

Native rabies virus glycoprotein (RVGvir) is a trimeric, membrane-anchored protein that has been shown to interact with the p75 neurotrophin receptor. In order to determine if the RVG trimeric oligomerization state is required for its binding with p75, different soluble recombinant molecules containing the entire RVG ectodomain (RVGect) were expressed alone or fused at its C terminus to the trimerization domain of the bacteriophage T4 fibritin, termed ‘foldon’. The oligomerization status of recombinant RVG was investigated using sedimentation in sucrose gradient and p75 binding assays. It was found that, in the absence of the fibritin foldon, recombinant RVGect forms unstable trimers that dissociate into monomers in a concentration-dependent manner. C-terminal fusion with the foldon induces stable RVG trimerization, which is concentration-independent. Furthermore, the fibritin foldon maintains the native antigenic structure of the carboxy part of RVGect. Cell binding experiments showed that RVG trimerization is required for efficient interaction with p75. However, the exact mode of trimerization appears unimportant, as trimeric recombinant RVGect (fused to the fibritin foldon) and RVGvir both recognize p75 with similar nanomolar affinities, as shown by surface plasmon resonance experiments. Altogether, these results show that the C-terminal fusion of the RVG ectodomain with the fibritin foldon is a powerful way to obtain a recombinant trimeric native-like structure of the p75 binding domain of RVG.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81063-0
2005-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862543.html?itemId=/content/journal/jgv/10.1099/vir.0.81063-0&mimeType=html&fmt=ahah

References

  1. Baldwin A. N., Shooter E. M. 1995; Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N -glycosylation sites. J Biol Chem 270:4594–4602 [CrossRef]
    [Google Scholar]
  2. Benmansour A., Leblois H., Coulon P., Tuffereau C., Gaudin Y., Flamand A., Lafay F. 1991; Antigenicity of rabies virus glycoprotein. J Virol 65:4198–4203
    [Google Scholar]
  3. Cox J. H., Dietzschold B., Schneider L. G. 1977; Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun 16:754–759
    [Google Scholar]
  4. Desmezieres E., Maillard A. P., Gaudin Y., Tordo N., Perrin P. 2003; Differential stability and fusion activity of lyssavirus glycoprotein trimers. Virus Res 91:181–187 [CrossRef]
    [Google Scholar]
  5. Dietzschold B., Gore M., Marchadier D. 7 other authors 1990; Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J Virol 64:3804–3809
    [Google Scholar]
  6. Escribano-Romero E., Rawling J., Garcia-Barreno B., Melero J. A. 2004; The soluble form of human respiratory syncytial virus attachment protein differs from the membrane-bound form in its oligomeric state but is still capable of binding to cell surface proteoglycans. J Virol 78:3524–3532 [CrossRef]
    [Google Scholar]
  7. Gaudin Y., Ruigrok R. W., Tuffereau C., Knossow M., Flamand A. 1992; Rabies virus glycoprotein is a trimer. Virology 187:627–632 [CrossRef]
    [Google Scholar]
  8. Gaudin Y., Moreira S., Benejean J., Blondel D., Flamand A., Tuffereau C. 1999; Soluble ectodomain of rabies virus glycoprotein expressed in eukaryotic cells folds in a monomeric conformation that is antigenically distinct from the native state of the complete, membrane-anchored glycoprotein. J Gen Virol 80:1647–1656
    [Google Scholar]
  9. Harbury P. B., Zhang T., Kim P. S., Alber T. 1993; A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407 [CrossRef]
    [Google Scholar]
  10. He X. L., Garcia K. C. 2004; Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304:870–875 [CrossRef]
    [Google Scholar]
  11. Hoppe H. J., Barlow P. N., Reid K. B. 1994; A parallel three stranded alpha-helical bundle at the nucleation site of collagen triple-helix formation. FEBS Lett 344:191–195 [CrossRef]
    [Google Scholar]
  12. Jallet C., Jacob Y., Bahloul C., Drings A., Desmezieres E., Tordo N., Perrin P. 1999; Chimeric lyssavirus glycoproteins with increased immunological potential. J Virol 73:225–233
    [Google Scholar]
  13. Jarvis D. L., Finn E. E. 1995; Biochemical analysis of the N -glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212:500–511 [CrossRef]
    [Google Scholar]
  14. Kim M. H., Billiar T. R., Seol D. W. 2004; The secretable form of trimeric TRAIL, a potent inducer of apoptosis. Biochem Biophys Res Commun 321:930–935 [CrossRef]
    [Google Scholar]
  15. Krasnykh V., Belousova N., Korokhov N., Mikheeva G., Curiel D. T. 2001; Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75:4176–4183 [CrossRef]
    [Google Scholar]
  16. Lafay F., Benmansour A., Chebli K., Flamand A. 1996; Immunodominant epitopes defined by a yeast-expressed library of random fragments of the rabies virus glycoprotein map outside major antigenic sites. J Gen Virol 77:339–346 [CrossRef]
    [Google Scholar]
  17. Lafon M., Wiktor T. J., Macfarlan R. I. 1983; Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64:843–851 [CrossRef]
    [Google Scholar]
  18. Langevin C., Tuffereau C. 2002; Mutations conferring resistance to neutralization by a soluble form of the neurotrophin receptor (p75NTR) map outside of the known antigenic sites of the rabies virus glycoprotein. J Virol 76:10756–10765 [CrossRef]
    [Google Scholar]
  19. Langevin C., Jaaro H., Bressanelli S., Fainzilber M., Tuffereau C. 2002; Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J Biol Chem 277:37655–37662 [CrossRef]
    [Google Scholar]
  20. Lentz T. L., Burrage T. G., Smith A. L., Tignor G. H. 1983; The acetylcholine receptor as a cellular receptor for rabies virus. Yale J Biol Med 56:315–322
    [Google Scholar]
  21. Letarov A. V., Londer Y. Y., Boudko S. P., Mesyanzhinov V. V. 1999; The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. Biochemistry 64:817–823
    [Google Scholar]
  22. Liepinsh E., Ilag L. L., Otting G., Ibanez C. F. 1997; NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 16:4999–5005 [CrossRef]
    [Google Scholar]
  23. Locksley R. M., Killeen N., Lenardo M. J. 2001; The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501 [CrossRef]
    [Google Scholar]
  24. Lortat-Jacob H., Chouin E., Cusack S., van Raaij M. J. 2001; Kinetic analysis of adenovirus fiber binding to its receptor reveals an avidity mechanism for trimeric receptor-ligand interactions. J Biol Chem 276:9009–9015 [CrossRef]
    [Google Scholar]
  25. Maillard A. P., Gaudin Y. 2002; Rabies virus glycoprotein can fold in two alternative, antigenically distinct conformations depending on membrane-anchor type. J Gen Virol 83:1465–1476
    [Google Scholar]
  26. McAlinden A., Smith T. A., Sandell L. J., Ficheux D., Parry D. A., Hulmes D. J. 2003; Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278:42200–42207 [CrossRef]
    [Google Scholar]
  27. McDonald N. Q., Lapatto R., Murray-Rust J., Gunning J., Wlodawer A., Blundell T. L. 1991; New protein fold revealed by a 2·3-Å resolution crystal structure of nerve growth factor. Nature 354:411–414 [CrossRef]
    [Google Scholar]
  28. Miroshnikov K. A., Marusich E. I., Cerritelli M. E., Cheng N., Hyde C. C., Steven A. C., Mesyanzhinov V. V. 1998; Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein Eng 11:329–332 [CrossRef]
    [Google Scholar]
  29. Mitraki A., Barge A., Chroboczek J., Andrieu J. P., Gagnon J., Ruigrok R. W. 1999; Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. Eur J Biochem 264:599–606 [CrossRef]
    [Google Scholar]
  30. Papanikolopoulou K., Forge V., Goeltz P., Mitraki A. 2004a; Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage T4 fibritin. J Biol Chem 279:8991–8998 [CrossRef]
    [Google Scholar]
  31. Papanikolopoulou K., Teixeira S., Belrhali H., Forsyth V. T., Mitraki A., van Raaij M. J. 2004b; Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif. J Mol Biol 342:219–227 [CrossRef]
    [Google Scholar]
  32. Park Y. C., Burkitt V., Villa A. R., Tong L., Wu H. 1999; Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533–538 [CrossRef]
    [Google Scholar]
  33. Prehaud C., Coulon P., LaFay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62:1–7
    [Google Scholar]
  34. Raux H., Coulon P., Lafay F., Flamand A. 1995; Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface of the virion can be neutralizing. Virology 210:400–408 [CrossRef]
    [Google Scholar]
  35. Richalet-Secordel P. M., Rauffer-Bruyere N., Christensen L. L., Ofenloch-Haehnle B., Seidel C., Van Regenmortel M. H. 1997; Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation. Anal Biochem 249:165–173 [CrossRef]
    [Google Scholar]
  36. Seif I., Coulon P., Rollin P. E., Flamand A. 1985; Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol 53:926–934
    [Google Scholar]
  37. Shiraishi T., Suzuyama K., Okamoto H. 9 other authors 2004; Increased cytotoxicity of soluble Fas ligand by fusing isoleucine zipper motif. Biochem Biophys Res Commun 322:197–202 [CrossRef]
    [Google Scholar]
  38. Tao Y., Strelkov S. V., Mesyanzhinov V. V., Rossmann M. G. 1997; Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5:789–798 [CrossRef]
    [Google Scholar]
  39. Thoulouze M. I., Lafage M., Schachner M., Hartmann U., Cremer H., Lafon M. 1998; The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190
    [Google Scholar]
  40. Tuffereau C., Benejean J., Alfonso A. M., Flamand A., Fishman M. C. 1998a; Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. J Virol 72:1085–1091
    [Google Scholar]
  41. Tuffereau C., Benejean J., Blondel D., Kieffer B., Flamand A. 1998b; Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J 17:7250–7259 [CrossRef]
    [Google Scholar]
  42. Warrell M. J., Warrell D. A. 2004; Rabies and other lyssavirus diseases. Lancet 363:959–969 [CrossRef]
    [Google Scholar]
  43. Welcher A. A., Bitler C. M., Radeke M. J., Shooter E. M. 1991; Nerve growth factor binding domain of the nerve growth factor receptor. Proc Natl Acad Sci U S A 88:159–163 [CrossRef]
    [Google Scholar]
  44. Whitt M. A., Buonocore L., Prehaud C., Rose J. K. 1991; Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology 185:681–688 [CrossRef]
    [Google Scholar]
  45. Wojczyk B., Shakin-Eshleman S. H., Doms R. W., Xiang Z. Q., Ertl H. C., Wunner W. H., Spitalnik S. L. 1995; Stable secretion of a soluble, oligomeric form of rabies virus glycoprotein: influence of N -glycan processing on secretion. Biochemistry 34:2599–2609 [CrossRef]
    [Google Scholar]
  46. Wojczyk B. S., Stwora-Wojczyk M., Shakin-Eshleman S., Wunner W. H., Spitalnik S. L. 1998; The role of site-specific N-glycosylation in secretion of soluble forms of rabies virus glycoprotein. Glycobiology 8:121–130 [CrossRef]
    [Google Scholar]
  47. Yan H., Chao M. V. 1991; Disruption of cysteine-rich repeats of the p75 nerve growth factor receptor leads to loss of ligand binding. J Biol Chem 266:12099–12104
    [Google Scholar]
  48. Yang X., Lee J., Mahony E. M., Kwong P. D., Wyatt R., Sodroski J. 2002; Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J Virol 76:4634–4642 [CrossRef]
    [Google Scholar]
  49. Zeder-Lutz G., Benito A., Van Regenmortel M. H. 1999; Active concentration measurements of recombinant biomolecules using biosensor technology. J Mol Recognit 12:300–309 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81063-0
Loading
/content/journal/jgv/10.1099/vir.0.81063-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error