1887

Abstract

(ECTV) is an orthopoxvirus whose natural host is the mouse; it is related closely to , the causative agent of smallpox, and , the cause of an emerging zoonosis. The recent sequencing of its genome, along with an effective animal model, makes ECTV an attractive model for the study of poxvirus pathogenesis, antiviral and vaccine testing and viral immune and inflammatory responses. This review discusses the pathogenesis of mousepox, modulation of the immune response by the virus and the cytokine and cellular components of the skin and systemic immune system that are critical to recovery from infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81090-0
2005-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2645.html?itemId=/content/journal/jgv/10.1099/vir.0.81090-0&mimeType=html&fmt=ahah

References

  1. Aizawa Y., Akita K., Taniai M. 9 other authors 1999; Cloning and expression of interleukin-18 binding protein. FEBS Lett 445:338–342 [CrossRef]
    [Google Scholar]
  2. Alcamí A. 2003; Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50 [CrossRef]
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  4. Alcamí A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639
    [Google Scholar]
  5. Alcamí A., Khanna A., Paul N. L., Smith G. L. 1999; Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 80:949–959
    [Google Scholar]
  6. Alcamí A., Symons J. A., Smith G. L. 2000; The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239 [CrossRef]
    [Google Scholar]
  7. Almazán F., Tscharke D. C., Smith G. L. 2001; The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication. J Virol 75:7018–7029 [CrossRef]
    [Google Scholar]
  8. Andrewes C. H., Elford W. J. 1947; Infectious ectromelia: experiments on interference and immunisation. Br J Exp Pathol 28:278–285
    [Google Scholar]
  9. Arase H., Mocarski E. S., Campbell A. E., Hill A. B., Lanier L. L. 2002; Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–1326 [CrossRef]
    [Google Scholar]
  10. Bai H., Buller R. M. L., Chen N., Green M., Nuara A. A. 2005; Biosynthesis of the IFN- γ binding protein of ectromelia virus, the causative agent of mousepox. Virology 334:41–50 [CrossRef]
    [Google Scholar]
  11. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976
    [Google Scholar]
  12. Beattie E., Kauffman E. B., Martinez H., Perkus M. E., Jacobs B. L., Paoletti E., Tartaglia J. 1996; Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12:89–94 [CrossRef]
    [Google Scholar]
  13. Bhawan J., Dayal Y., Bhan A. K. 1986; Langerhans cells in molluscum contagiosum, verruca vulgaris, plantar wart, and condyloma acuminatum. J Am Acad Dermatol 15:645–649 [CrossRef]
    [Google Scholar]
  14. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  15. Born T. L., Morrison L. A., Esteban D. J., VandenBos T., Thebeau L. G., Chen N., Spriggs M. K., Sims J. E., Buller R. M. L. 2000; A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164:3246–3254 [CrossRef]
    [Google Scholar]
  16. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A. J. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [CrossRef]
    [Google Scholar]
  17. Brick D. J., Burke R. D., Schiff L., Upton C. 1998; Shope fibroma virus RING finger protein N1R binds DNA and inhibits apoptosis. Virology 249:42–51 [CrossRef]
    [Google Scholar]
  18. Brick D. J., Burke R. D., Minkley A. A., Upton C. 2000; Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis. J Gen Virol 81:1087–1097
    [Google Scholar]
  19. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci U S A 94:3183–3188 [CrossRef]
    [Google Scholar]
  20. Bro wnstein D. G., Gras L. 1995; Chromosome mapping of Rmp-4 , a gonad-dependent gene encoding host resistance to mousepox. J Virol 69:6958–6964
    [Google Scholar]
  21. Brownstein D. G., Gras L. 1997; Differential pathogenesis of lethal mousepox in congenic DBA/2 mice implicates natural killer cell receptor NKR-P1 in necrotizing hepatitis and the fifth component of complement in recruitment of circulating leukocytes to spleen. Am J Pathol 150:1407–1420
    [Google Scholar]
  22. Brownstein D. G., Bhatt P. N., Gras L., Budris T. 1992; Serial backcross analysis of genetic resistance to mousepox, using marker loci for Rmp-2 and Rmp-3 . J Virol 66:7073–7079
    [Google Scholar]
  23. Brownstein D. G., Bhatt P. N., Gras L. 1993; Ectromelia virus replication in major target organs of innately resistant and susceptible mice after intravenous infection. Arch Virol 129:65–75 [CrossRef]
    [Google Scholar]
  24. Buller R. M. L., Palumbo G. J. 1991; Poxvirus pathogenesis. Microbiol Rev 55:80–122
    [Google Scholar]
  25. Buller R. M. L., Potter M., Wallace G. D. 1986; Variable resistance to ectromelia (mousepox) virus among genera of Mus . Curr Top Microbiol Immunol 127:319–322
    [Google Scholar]
  26. Buller R. M. L., Owens G., Schriewer J., Melman L., Beadle J. R., Hostetler K. Y. 2004; Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology 318:474–481 [CrossRef]
    [Google Scholar]
  27. Calderara S., Xiang Y., Moss B. 2001; Orthopoxvirus IL-18 binding proteins: affinities and antagonist activities. Virology 279:22–26 [CrossRef]
    [Google Scholar]
  28. Cameron C. M., Barrett J. W., Mann M., Lucas A., McFadden G. 2005; Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 337:55–67 [CrossRef]
    [Google Scholar]
  29. Cao J. X., Teoh M. L. T., Moon M., McFadden G., Evans D. H. 2002; Leporipoxvirus Cu-Zn superoxide dismutase homologs inhibit cellular superoxide dismutase, but are not essential for virus replication or virulence. Virology 296:125–135 [CrossRef]
    [Google Scholar]
  30. Chang H.-W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825–4829 [CrossRef]
    [Google Scholar]
  31. Chaudhri G., Panchanathan V., Buller R. M. L., van den Eertwegh A. J. M., Claassen E., Zhou J., de Chazal R., Laman J. D., Karupiah G. 2004; Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci U S A 101:9057–9062 [CrossRef]
    [Google Scholar]
  32. Chen W., Drillien R., Spehner D., Buller R. M. L. 1993; In vitro and in vivo study of the ectromelia virus homolog of the vaccinia virus K1L host range gene. Virology 196:682–693 [CrossRef]
    [Google Scholar]
  33. Chen N., Buller R. M. L., Wall E. M., Upton C. 2000; Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Res 66:155–173 [CrossRef]
    [Google Scholar]
  34. Chen N., Danila M. I., Feng Z., Buller R. M. L., Wang C., Han X., Lefkowitz E. J., Upton C. 2003; The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317:165–186 [CrossRef]
    [Google Scholar]
  35. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. L. 1995; Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling. J Biol Chem 270:15974–15978 [CrossRef]
    [Google Scholar]
  36. Comeau M. R., Johnson R., DuBose R. F. 10 other authors 1998; A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8:473–482 [CrossRef]
    [Google Scholar]
  37. Companjen A. R., van der Velden V. H. J., Vooys A., Debets R., Benner R., Prens E. P. 2000; Human keratinocytes are major producers of IL-18: predominant expression of the unprocessed form. Eur Cytokine Netw 11:383–390
    [Google Scholar]
  38. Davies M. V., Elroy-Stein O., Jagus R., Moss B., Kaufman R. J. 1992; The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 66:1943–1950
    [Google Scholar]
  39. Delano M. L., Brownstein D. G. 1995; Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877
    [Google Scholar]
  40. Dick E. J. Jr, Kittell C. L., Meyer H. 7 other authors 1996; Mousepox outbreak in a laboratory mouse colony. Lab Anim Sci 46:602–611
    [Google Scholar]
  41. DiPerna G., Stack J., Bowie A. G. 7 other authors 2004; Poxvirus protein N1L targets the I- κ B kinase complex, inhibits signaling to NF- κ B by the tumor necrosis factor superfamily of receptors, and inhibits NF- κ B and IRF3 signaling by Toll-like receptors. J Biol Chem 279:36570–36578 [CrossRef]
    [Google Scholar]
  42. Doyle S. E., Vaidya S. A., O'Connell R. 8 other authors 2002; IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251–263 [CrossRef]
    [Google Scholar]
  43. Doyle S. E., O'Connell R., Vaidya S. A., Chow E. K., Yee K., Cheng G. 2003; Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4. J Immunol 170:3565–3571 [CrossRef]
    [Google Scholar]
  44. Drillien R., Spehner D., Bohbot A., Hanau D. 2000; Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268:471–481 [CrossRef]
    [Google Scholar]
  45. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768
    [Google Scholar]
  46. Esteban D. J., Buller R. M. L. 2004; Identification of residues in an orthopoxvirus interleukin-18 binding protein involved in ligand binding and species specificity. Virology 323:197–207 [CrossRef]
    [Google Scholar]
  47. Esteban D. J., Nuara A. A., Buller R. M. L. 2004; Interleukin-18 and glycosaminoglycan binding by a protein encoded by Variola virus . J Gen Virol 85:1291–1299 [CrossRef]
    [Google Scholar]
  48. Fenner F. 1948; The pathogenesis of the acute exanthems: an interpretation based on experimental investigations with mousepox (infectious ectromelia of mice). Lancet ii:915–920
    [Google Scholar]
  49. Fenner F. 1981; Mousepox (infectious ectromelia): past, present, and future. Lab Anim Sci 31:553–559
    [Google Scholar]
  50. Fenner F., Henderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and its Eradication Geneva: World Health Organization;
    [Google Scholar]
  51. Forbes C. A., Brown M. G., Cho R., Shellam G. R., Yokoyama W. M., Scalzo A. A. 1997; The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6. Genomics 41:406–413 [CrossRef]
    [Google Scholar]
  52. Freemont P. S., Hanson I. M., Trowsdale J. 1991; A novel cysteine-rich sequence motif. Cell 64:483–484 [CrossRef]
    [Google Scholar]
  53. Fujino M., Kawasaki M., Funeshima N. 9 other authors 2003; CrmA gene expression protects mice against concanavalin-A-induced hepatitis by inhibiting IL-18 secretion and hepatocyte apoptosis. Gene Ther 10:1781–1790 [CrossRef]
    [Google Scholar]
  54. Gardner J. D., Tscharke D. C., Reading P. C., Smith G. L. 2001; Vaccinia virus semaphorin A39R is a 50–55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. J Gen Virol 82:2083–2093
    [Google Scholar]
  55. Ghayur T., Banerjee S., Hugunin M. 11 other authors 1997; Caspase-1 processes IFN- γ -inducing factor and regulates LPS-induced IFN- γ production. Nature 386:619–623 [CrossRef]
    [Google Scholar]
  56. Graham K. A., Lalani A. S., Macen J. L. 7 other authors; 1997; The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229:12–24 [CrossRef]
    [Google Scholar]
  57. Gröne A. 2002; Keratinocytes and cytokines. Vet Immunol Immunopathol 88:1–12 [CrossRef]
    [Google Scholar]
  58. Gu Y., Kuida K., Tsutsui H. 14 other authors 1997; Activation of interferon- γ inducing factor mediated by interleukin-1 β converting enzyme. Science 275:206–209 [CrossRef]
    [Google Scholar]
  59. Gubser C., Hué S., Kellam P., Smith G. L. 2004; Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117 [CrossRef]
    [Google Scholar]
  60. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O'Neill L. A. J. 2003; The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [CrossRef]
    [Google Scholar]
  61. Hayday A. C. 2000; γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026 [CrossRef]
    [Google Scholar]
  62. Hernando R. A., Ruby J. C., Halliday G. M. 1994; Changes in epidermal Langerhans cells, γδ T cells and CD4 T cells after intradermal infection with recombinant vaccinia virus expressing cytokine genes. Immunol Cell Biol 72:383–389 [CrossRef]
    [Google Scholar]
  63. Huang J., Huang Q., Zhou X. 11 other authors 2004; The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J Biol Chem 279:54110–54116 [CrossRef]
    [Google Scholar]
  64. Isaacs S. N., Kotwal G. J., Moss B. 1992; Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A 89:628–632 [CrossRef]
    [Google Scholar]
  65. Jacoby R. O., Bhatt P. N., Brownstein D. G. 1989; Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol 108:49–58 [CrossRef]
    [Google Scholar]
  66. Jakob T., Ring J., Udey M. C. 2001; Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol 108:688–696 [CrossRef]
    [Google Scholar]
  67. Kämpfer H., Kalina U., Mühl H., Pfeilschifter J., Frank S. 1999; Counterregulation of interleukin-18 mRNA and protein expression during cutaneous wound repair in mice. J Invest Dermatol 113:369–374 [CrossRef]
    [Google Scholar]
  68. Kämpfer H., Mühl H., Manderscheid M., Kalina U., Kauschat D., Pfeilschifter J., Frank S. 2000; Regulation of interleukin-18 (IL-18) expression in keratinocytes (HaCaT): implications for early wound healing. Eur Cytokine Netw 11:626–633
    [Google Scholar]
  69. Karupiah G., Fredrickson T. N., Holmes K. L., Khairallah L. H., Buller R. M. L. 1993a; Importance of interferons in recovery from mousepox. J Virol 67:4214–4226
    [Google Scholar]
  70. Karupiah G., Xie Q. W., Buller R. M. L., Nathan C., Duarte C., MacMicking J. D. 1993b; Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261:1445–1448 [CrossRef]
    [Google Scholar]
  71. Karupiah G., Buller R. M. L., Van Rooijen N., Duarte C. J., Chen J. 1996; Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70:8301–8309
    [Google Scholar]
  72. Karupiah G., Chen J.-H., Nathan C. F., Mahalingam S., MacMicking J. D. 1998; Identification of Nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J Virol 72:7703–7706
    [Google Scholar]
  73. Kettle S., Blake N. W., Law K. M., Smith G. L. 1995; Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M r 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206:136–147 [CrossRef]
    [Google Scholar]
  74. Kluczyk A., Siemion I. Z., Szewczuk Z., Wieczorek Z. 2002; The immunosuppressive activity of peptide fragments of vaccinia virus C10L protein and a hypothesis on the role of this protein in the viral invasion. Peptides 23:823–834 [CrossRef]
    [Google Scholar]
  75. Koizumi H., Sato-Matsumura K. C., Nakamura H., Shida K., Kikkawa S., Matsumoto M., Toyoshima K., Seya T. 2001; Distribution of IL-18 and IL-18 receptor in human skin: various forms of IL-18 are produced in keratinocytes. Arch Dermatol Res 293:325–333 [CrossRef]
    [Google Scholar]
  76. Kondo S., Kooshesh F., Sauder D. N. 1997; Penetration of keratinocyte-derived cytokines into basement membrane. J Cell Physiol 171:190–195 [CrossRef]
    [Google Scholar]
  77. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178 [CrossRef]
    [Google Scholar]
  78. Kotwal G. J., Hügin A. W., Moss B. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587 [CrossRef]
    [Google Scholar]
  79. Lalani A. S., Masters J., Graham K., Liu L., Lucas A., McFadden G. 1999; Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis. Virology 256:233–245 [CrossRef]
    [Google Scholar]
  80. Langland J. O., Jacobs B. L. 2002; The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299:133–141 [CrossRef]
    [Google Scholar]
  81. Lauwerys B. R., Renauld J.-C., Houssiau F. A. 1999; Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 11:822–830 [CrossRef]
    [Google Scholar]
  82. Law K. M., Smith G. L. 1992; A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J Gen Virol 73:549–557 [CrossRef]
    [Google Scholar]
  83. Lefkowitz E. J., Upton C., Changayil S. S., Buck C., Traktman P., Buller R. M. L. 2005; Poxvirus Bioinformatics Resource Center: a comprehensive Poxviridae informational and analytical resource. Nucleic Acids Res 33:D311–D316 [CrossRef]
    [Google Scholar]
  84. Loparev V. N., Parsons J. M., Knight J. C., Panus J. F., Ray C. A., Buller R. M. L., Pickup D. J., Esposito J. J. 1998; A third distinct tumor necrosis factor receptor of orthopoxviruses. Proc Natl Acad Sci U S A 95:3786–3791 [CrossRef]
    [Google Scholar]
  85. Macen J. L., Garner R. S., Musy P. Y., Brooks M. A., Turner P. C., Moyer R. W., McFadden G., Bleackley R. C. 1996; Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proc Natl Acad Sci U S A 93:9108–9113 [CrossRef]
    [Google Scholar]
  86. Mackintosh J. A. 2001; The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol 211:101–113 [CrossRef]
    [Google Scholar]
  87. Mahalingam S., Karupiah G., Takeda K., Akira S., Matthaei K. I., Foster P. S. 2001; Enhanced resistance in STAT6-deficient mice to infection with ectromelia virus. Proc Natl Acad Sci U S A 98:6812–6817 [CrossRef]
    [Google Scholar]
  88. Marchal J. 1930; Infectious ectromelia. A hitherto undescribed virus disease of mice. J Pathol Bacteriol 33:713–728 [CrossRef]
    [Google Scholar]
  89. Mee J. B., Alam Y., Groves R. W. 2000; Human keratinocytes constitutively produce but do not process interleukin-18. Br J Dermatol 143:330–336 [CrossRef]
    [Google Scholar]
  90. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 11:1973–1980
    [Google Scholar]
  91. Morrison L. A. 2004; The toll of herpes simplex virus infection. Trends Microbiol 12:353–356 [CrossRef]
    [Google Scholar]
  92. Mossman K., Upton C., Buller R. M. L., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon- γ binding proteins. Virology 208:762–769 [CrossRef]
    [Google Scholar]
  93. Müllbacher A., Hla R. T., Museteanu C., Simon M. M. 1999a; Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J Virol 73:1665–1667
    [Google Scholar]
  94. Müllbacher A., Wallich R., Moyer R. W., Simon M. M. 1999b; Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections. J Immunol 162:7315–7321
    [Google Scholar]
  95. Murphy J.-E., Robert C., Kupper T. S. 2000; Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J Invest Dermatol 114:602–608 [CrossRef]
    [Google Scholar]
  96. Najarro P., Traktman P., Lewis J. A. 2001; Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J Virol 75:3185–3196 [CrossRef]
    [Google Scholar]
  97. Nerenberg B. T. H., Taylor J., Bartee E., Gouveia K., Barry M., Früh K. 2005; The poxviral RING protein p28 is a ubiquitin ligase that targets ubiquitin to viral replication factories. J Virol 79:597–601 [CrossRef]
    [Google Scholar]
  98. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82:2095–2105
    [Google Scholar]
  99. Norbury C. C., Sigal L. J. 2003; Cross priming or direct priming: is that really the question?. Curr Opin Immunol 15:82–88 [CrossRef]
    [Google Scholar]
  100. Novick D., Kim S. H., Fantuzzi G., Reznikov L. L., Dinarello C. A., Rubinstein M. 1999; Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10:127–136 [CrossRef]
    [Google Scholar]
  101. Okamura H., Tsutsui H., Komatsu T. 12 other authors 1995; Cloning of a new cytokine that induces IFN- γ production by T cells. Nature 378:88–91 [CrossRef]
    [Google Scholar]
  102. Osterhaus A. D. M. E., Teppema J. S., Wirahadiredja R. M. S., van Steenis G. 1981; Mousepox in the Netherlands. Lab Anim Sci 31:704–706
    [Google Scholar]
  103. Osterrieder N., Meyer H., Pfeffer M. 1994; Characterization of the gene encoding the A-type inclusion body protein of mousepox virus. Virus Genes 8:125–135 [CrossRef]
    [Google Scholar]
  104. Palumbo G. J., Pickup D. J., Fredrickson T. N., McIntyre L. J., Buller R. M. L. 1989; Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus. Virology 172:262–273 [CrossRef]
    [Google Scholar]
  105. Panus J. F., Smith C. A., Ray C. A., Smith T. D., Patel D. D., Pickup D. J. 2002; Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc Natl Acad Sci U S A 99:8348–8353 [CrossRef]
    [Google Scholar]
  106. Parkinson J. E., Sanderson C. M., Smith G. L. 1995; The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology 214:177–188 [CrossRef]
    [Google Scholar]
  107. Ray C. A., Black R. A., Kronheim S. R., Greenstreet T. A., Sleath P. R., Salvesen G. S., Pickup D. J. 1992; Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 β converting enzyme. Cell 69:597–604 [CrossRef]
    [Google Scholar]
  108. Reading P. C., Smith G. L. 2003; Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968 [CrossRef]
    [Google Scholar]
  109. Reading P. C., Khanna A., Smith G. L. 2002; Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 292:285–298 [CrossRef]
    [Google Scholar]
  110. Reading P. C., Moore J. B., Smith G. L. 2003a; Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278 [CrossRef]
    [Google Scholar]
  111. Reading P. C., Symons J. A., Smith G. L. 2003b; A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 170:1435–1442 [CrossRef]
    [Google Scholar]
  112. Ribas G., Rivera J., Saraiva M., Campbell R. D., Alcami A. 2003; Genetic variability of immunomodulatory genes in ectromelia virus isolates detected by denaturing high-performance liquid chromatography. J Virol 77:10139–10146 [CrossRef]
    [Google Scholar]
  113. Roberts J. A. 1962; Histopathogenesis of mousepox. II. Cutaneous infection. Br J Exp Pathol 43:462–468
    [Google Scholar]
  114. Ruby J., Bluethmann H., Peschon J. J. 1997; Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors. J Exp Med 186:1591–1596 [CrossRef]
    [Google Scholar]
  115. Sanderson C. M., Parkinson J. E., Hollinshead M., Smith G. L. 1996; Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J Virol 70:905–914
    [Google Scholar]
  116. Saraiva M., Alcami A. 2001; CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 75:226–233 [CrossRef]
    [Google Scholar]
  117. Saraiva M., Smith P., Fallon P. G., Alcami A. 2002; Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J Exp Med 196:829–839 [CrossRef]
    [Google Scholar]
  118. Senkevich T. G., Koonin E. V., Buller R. M. L. 1994; A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198:118–128 [CrossRef]
    [Google Scholar]
  119. Senkevich T. G., Wolffe E. J., Buller R. M. L. 1995; Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 69:4103–4111
    [Google Scholar]
  120. Shisler J. L., Jin X.-L. 2004; The vaccinia virus K1L gene product inhibits host NF- κ B activation by preventing I κ B α degradation. J Virol 78:3553–3560 [CrossRef]
    [Google Scholar]
  121. Shisler J. L., Isaacs S. N., Moss B. 1999; Vaccinia virus serpin-1 deletion mutant exhibits a host range defect characterized by low levels of intermediate and late mRNAs. Virology 262:298–311 [CrossRef]
    [Google Scholar]
  122. Smith V. P., Alcami A. 2000; Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J Virol 74:8460–8471 [CrossRef]
    [Google Scholar]
  123. Smith V. P., Alcami A. 2002; Inhibition of interferons by ectromelia virus. J Virol 76:1124–1134 [CrossRef]
    [Google Scholar]
  124. Smith C. A., Hu F. Q., Smith T. D., Richards C. L., Smolak P., Goodwin R. G., Pickup D. J. 1996; Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT α . Virology 223:132–147 [CrossRef]
    [Google Scholar]
  125. Smith C. A., Smith T. D., Smolak P. J. 9 other authors 1997; Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236:316–327 [CrossRef]
    [Google Scholar]
  126. Smith V. P., Bryant N. A., Alcamí A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230
    [Google Scholar]
  127. Spriggs M. K., Hruby D. E., Maliszewski C. R., Pickup D. J., Sims J. E., Buller R. M. L., VanSlyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152 [CrossRef]
    [Google Scholar]
  128. Šroller V., Kutinová L., Němečková S., Simonová V., Vonka V. 1998; Effect of 3- β -hydroxysteroid dehydrogenase gene deletion on virulence and immunogenicity of different vaccinia viruses and their recombinants. Arch Virol 143:1311–1320 [CrossRef]
    [Google Scholar]
  129. Stack J., Haga I. R., Schröder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [CrossRef]
    [Google Scholar]
  130. Stewart T. L., Wasilenko S. T., Barry M. 2005; Vaccinia virus F1L protein is a tail-anchored protein that functions at the mitochondria to inhibit apoptosis. J Virol 79:1084–1098 [CrossRef]
    [Google Scholar]
  131. Stoll S., Muller G., Kurimoto M., Saloga J., Tanimoto T., Yamauchi H., Okamura H., Knop J., Enk A. H. 1997; Production of IL-18 (IFN-gamma-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol 159:298–302
    [Google Scholar]
  132. Stoy N. 2001; Macrophage biology and pathobiology in the evolution of immune responses: a functional analysis. Pathobiology 69:179–211 [CrossRef]
    [Google Scholar]
  133. Streilein J. W. 1983; Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol 80:Suppl.12s–16s [CrossRef]
    [Google Scholar]
  134. Symons J. A., Alcamí A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560 [CrossRef]
    [Google Scholar]
  135. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002a; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844
    [Google Scholar]
  136. Symons J. A., Tscharke D. C., Price N., Smith G. L. 2002b; A study of the vaccinia virus interferon- γ receptor and its contribution to virus virulence. J Gen Virol 83:1953–1964
    [Google Scholar]
  137. Teoh M. L. T., Walasek P. J., Evans D. H. 2003; Leporipoxvirus Cu,Zn-superoxide dismutase (SOD) homologs are catalytically inert decoy proteins that bind copper chaperone for SOD. J Biol Chem 278:33175–33184 [CrossRef]
    [Google Scholar]
  138. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986
    [Google Scholar]
  139. Turner P. C., Moyer R. W. 1995; Orthopoxvirus fusion inhibitor glycoprotein SPI-3 (open reading frame K2L) contains motifs characteristic of serine proteinase inhibitors that are not required for control of cell fusion. J Virol 69:5978–5987
    [Google Scholar]
  140. Turner S. J., Silke J., Kenshole B., Ruby J. 2000; Characterization of the ectromelia virus serpin, SPI-2. J Gen Virol 81:2425–2430
    [Google Scholar]
  141. Uchi H., Terao H., Koga T., Furue M. 2000; Cytokines and chemokines in the epidermis. J Dermatol Sci 24 (Suppl. 1):S29–S38 [CrossRef]
    [Google Scholar]
  142. Upton C., Macen J. L., Wishart D. S., McFadden G. 1990; Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179:618–631 [CrossRef]
    [Google Scholar]
  143. Upton C., Mossman K., McFadden G. 1992; Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 258:1369–1372 [CrossRef]
    [Google Scholar]
  144. Upton C., Schiff L., Rice S. A., Dowdeswell T., Yang X., McFadden G. 1994; A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. J Virol 68:4186–4195
    [Google Scholar]
  145. Uthaisangsook S., Day N. K., Bahna S. L., Good R. A., Haraguchi S. 2002; Innate immunity and its role against infections. Ann Allergy Asthma Immunol 88:253–264 [CrossRef]
    [Google Scholar]
  146. Wallich R., Simon M. M., Müllbacher A. 2001; Virulence of mousepox virus is independent of serpin-mediated control of cellular cytotoxicity. Viral Immunol 14:71–81 [CrossRef]
    [Google Scholar]
  147. Walzer T., Galibert L., Comeau M. R., De Smedt T. 2005a; Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. J Immunol 174:51–59 [CrossRef]
    [Google Scholar]
  148. Walzer T., Galibert L., De Smedt T. 2005b; Poxvirus semaphorin A39R inhibits phagocytosis by dendritic cells and neutrophils. Eur J Immunol 35:391–398 [CrossRef]
    [Google Scholar]
  149. Wasilenko S. T., Stewart T. L., Meyers A. F. A., Barry M. 2003; Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci U S A 100:14345–14350 [CrossRef]
    [Google Scholar]
  150. Williams I. R., Kupper T. S. 1996; Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sci 58:1485–1507 [CrossRef]
    [Google Scholar]
  151. Xiang Y., Moss B. 1999; IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A 96:11537–11542 [CrossRef]
    [Google Scholar]
  152. Xiang Y., Moss B. 2001a; Correspondence of the functional epitopes of poxvirus and human interleukin-18-binding proteins. J Virol 75:9947–9954 [CrossRef]
    [Google Scholar]
  153. Xiang Y., Moss B. 2001b; Determination of the functional epitopes of human interleukin-18-binding protein by site-directed mutagenesis. J Biol Chem 276:17380–17386 [CrossRef]
    [Google Scholar]
  154. Zhou J., Sun X. Y., Fernando G. J. P., Frazer I. H. 1992; The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion. Virology 189:678–686 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81090-0
Loading
/content/journal/jgv/10.1099/vir.0.81090-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error