1887

Abstract

(PMTV) RNA3 contains a triple gene block (TGB) encoding viral movement proteins and an open reading frame for a putative 8 kDa cysteine-rich protein (CRP). In this study, PMTV CRP was shown to be expressed in the course of virus infection, and a PMTV CRP-specific subgenomic RNA was mapped. CRP has previously been shown to be dispensable for infection of PMTV in . In this study, PMTV CRP was found to increase the severity of disease symptoms when expressed from or in and , suggesting that the protein affects virulence of the virus or might suppress a host defence mechanism. However, PMTV CRP did not show RNA silencing suppression activity in three assays. Host responses to the PMTV CRP expression from different viral genomes ranged from an absence of response to extreme resistance at a single cell level and were dependent on the viral genome. These findings emphasized involvement of viral proteins and/or virus-induced cell components in the plant reaction to CRP. PMTV CRP was predicted to possess a transmembrane segment. CRP fused to the green fluorescent protein was associated with endoplasmic reticulum-derived membranes and induced dramatic rearrangements of the endoplasmic reticulum structure, which might account for protein functions as a virulence factor of the virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81099-0
2005-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/10/2879.html?itemId=/content/journal/jgv/10.1099/vir.0.81099-0&mimeType=html&fmt=ahah

References

  1. Auld D. S. 2001; Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313 [CrossRef]
    [Google Scholar]
  2. Berg J. M., Godwin H. A. 1997; Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371 [CrossRef]
    [Google Scholar]
  3. Bragg J. N., Jackson A. O. 2004; The C-terminal region of the Barley stripe mosaic virus γ b protein participates in homologous interactions and is required for suppression of RNA silencing. Mol Plant Pathol 5:465–481 [CrossRef]
    [Google Scholar]
  4. Bragg J. N., Lawrence D. M., Jackson A. O. 2004; The N-terminal 85 amino acids of the Barley stripe mosaic virus γ b pathogenesis protein contain three zinc-binding motifs. J Virol 78:7379–7391 [CrossRef]
    [Google Scholar]
  5. Brigneti G., Voinnet O., Li W. X., Ji L. H., Ding S. W., Baulcombe D. C. 1998; Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana . EMBO J 17:6739–6746 [CrossRef]
    [Google Scholar]
  6. Canto T., MacFarlane S. A., Palukaitis P. 2004; ORF6 of Tobacco mosaic virus is a determinant of viral pathogenicity in Nicotiana benthamiana . J Gen Virol 85:3123–3133 [CrossRef]
    [Google Scholar]
  7. Carette J. E., van Lent J., MacFarlane S. A., Wellink J., van Kammen A. 2002; Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J Virol 76:6293–6301 [CrossRef]
    [Google Scholar]
  8. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  9. Donald R. G., Jackson A. O. 1994; The barley stripe mosaic virus γ b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell 6:1593–1606
    [Google Scholar]
  10. Donald R. G., Jackson A. O. 1996; RNA-binding activities of barley stripe mosaic virus γ b fusion proteins. J Gen Virol 77:879–888 [CrossRef]
    [Google Scholar]
  11. Dunoyer P., Herzog E., Hemmer O., Ritzenthaler C., Fritsch C. 2001; Peanut clump virus RNA-1-encoded P15 regulates viral RNA accumulation but is not abundant at viral RNA replication sites. J Virol 75:1941–1948 [CrossRef]
    [Google Scholar]
  12. Dunoyer P., Pfeffer S., Fritsch C., Hemmer O., Voinnet O., Richards K. E. 2002; Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29:555–567 [CrossRef]
    [Google Scholar]
  13. Gramstat A., Courtpozanis A., Rohde W. 1990; The 12 kDa protein of potato virus M displays properties of a nucleic acid-binding regulatory protein. FEBS Lett 276:34–38 [CrossRef]
    [Google Scholar]
  14. Han S., Sanfacon H. 2003; Tomato ringspot virus proteins containing the nucleoside triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes. J Virol 77:523–534 [CrossRef]
    [Google Scholar]
  15. Hausmann L., Töpfer R. 1999; Entwicklung von Plasmid-Vektoren. Vortr Pflanzenzücht 45:155–172 (in German
    [Google Scholar]
  16. Hehn A., Bouzoubaa S., Bate N., Twell D., Marbach J., Richards K., Guilley H., Jonard G. 1995; The small cysteine-rich protein of beet necrotic yellow vein virus regulates accumulation of RNA 2 in cis and coat protein in trans . Virology 210:73–81 [CrossRef]
    [Google Scholar]
  17. Hofmann K., Stoffel W. 1993; TMbase - a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166
    [Google Scholar]
  18. Johansen L. K., Carrington J. C. 2001; Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium -mediated transient expression system. Plant Physiol 126:930–938 [CrossRef]
    [Google Scholar]
  19. Johnson J. A., Bragg J. N., Lawrence D. M., Jackson A. O. 2003; Sequence elements controlling expression of Barley stripe mosaic virus subgenomic RNAs in vivo. Virology 313:66–80 [CrossRef]
    [Google Scholar]
  20. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049 [CrossRef]
    [Google Scholar]
  21. Kanyuka K. V., Vishnichenko V. K., Levay K. E., Kondrikov D. Yu., Ryabov E. V., Zavriev S. K. 1992; Nucleotide sequence of shallot virus X RNA reveals a 5′-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3′-proximal cistrons. J Gen Virol 73:2553–2560 [CrossRef]
    [Google Scholar]
  22. Kashiwazaki S., Scott K. P., Reavy B., Harrison B. D. 1995; Sequence analysis and gene content of potato mop-top virus RNA 3: further evidence of heterogeneity in the genome organization of furoviruses. Virology 206:701–706 [CrossRef]
    [Google Scholar]
  23. Keen N. T. 1990; Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24:447–463 [CrossRef]
    [Google Scholar]
  24. Koenig R., Beier C., Commandeur U., Lüth U., Kaufmann A., Lüddecke P. 1996; Beet soil-borne virus RNA 3 – a further example of the heterogeneity of the gene content of furovirus genomes and of triple gene block-carrying RNAs. Virology 216:202–207 [CrossRef]
    [Google Scholar]
  25. Koenig R., Pleij C. W. A., Beier C., Commandeur U. 1998; Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J Gen Virol 79:2027–2036
    [Google Scholar]
  26. Koonin E. V., Boyko V. P., Dolja V. V. 1991; Small cysteine-rich proteins of different groups of plant RNA viruses are related to different families of nucleic acid-binding proteins. Virology 181:395–398 [CrossRef]
    [Google Scholar]
  27. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  28. Li H.-W., Lucy A. P., Guo H.-S., Li W.-X., Ji L.-H., Wong S.-M., Ding S.-W. 1999; Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J 18:2683–2691 [CrossRef]
    [Google Scholar]
  29. Liu H. B., Reavy M., Swanson M., MacFarlane S. A. 2002; Functional replacement of the tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. Virology 298:232–239 [CrossRef]
    [Google Scholar]
  30. Lucy A. P., Guo H. S., Li W. X., Ding S. W. 2000; Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J 19:1672–1680 [CrossRef]
    [Google Scholar]
  31. Miller W. A., Koev G. 2000; Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273:1–8 [CrossRef]
    [Google Scholar]
  32. Morozov S. Yu., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [CrossRef]
    [Google Scholar]
  33. Pasquier C., Promponas V. J., Palaios G. A., Hamodrakas J. S., Hamodrakas S. J. 1999; A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the pred-tmr algorithm. Protein Eng 12:381–385 [CrossRef]
    [Google Scholar]
  34. Pečenková T., Moravec T., Filigarova M., Rosecka P., Cerovská N. 2004; Extended sequence analysis of three Danish Potato mop-top virus (PMTV) isolates. Virus Genes 29:249–255 [CrossRef]
    [Google Scholar]
  35. Petty I. T., French R., Jones R. W., Jackson A. O. 1990; Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J 9:3453–3457
    [Google Scholar]
  36. Petty I. T., Donald R. G., Jackson A. O. 1994; Multiple genetic determinants of barley stripe mosaic virus influence lesion phenotype on Chenopodium amaranticolor . Virology 198:218–226 [CrossRef]
    [Google Scholar]
  37. Pruss G., Ge X., Shi X. M., Carrington J. C., Vance V. B. 1997; Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868 [CrossRef]
    [Google Scholar]
  38. Reavy B., Arif M., Cowan G. H., Torrance L. 1998; Association of sequences in the coat protein/readthrough domain of potato mop-top virus with transmission by Spongospora subterranea . J Gen Virol 79:2343–2347
    [Google Scholar]
  39. Restrepo-Hartwig M., Ahlquist P. 1999; Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73:10303–10309
    [Google Scholar]
  40. Ritzenthaler C., Laporte C., Gaire F. 8 other authors 2002; Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J Virol 76:8808–8819 [CrossRef]
    [Google Scholar]
  41. Sandgren M., Savenkov E. I., Valkonen J. P. T. 2001; The readthrough region of Potato mop-top virus (PMTV) coat protein encoding RNA, the second largest RNA of PMTV genome, undergoes structural changes in naturally infected and experimentally inoculated plants. Arch Virol 146:467–477 [CrossRef]
    [Google Scholar]
  42. Sandgren M., Plaisted R. L., Watanabe K. N., Olsson S., Valkonen J. P. T. 2002; Evaluation of some North and South American potato breeding lines for resistance to Potato mop-top virus in Sweden. Am J Potato Res 79:205–210 [CrossRef]
    [Google Scholar]
  43. Savenkov E. I. 2002 Genus Pomovirus . In The Springer Index of Viruses , pp. 1297–1301 Edited by Tidona C. A., Darai G. Heidelberg, Germany: Springer;
    [Google Scholar]
  44. Savenkov E. I., Solovyev A. G., Morozov S. Yu. 1998; Genome sequences of poa semilatent and lychnis ringspot hordeiviruses. Arch Virol 143:1379–1393 [CrossRef]
    [Google Scholar]
  45. Savenkov E. I., Sandgren M., Valkonen J. P. T. 1999; Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus , genus Pomovirus . J Gen Virol 80:2779–2784
    [Google Scholar]
  46. Savenkov E. I., Germundsson A., Zamyatnin A. A. Jr, Sandgren M., Valkonen J. P. T. 2003; Potato mop-top virus : the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana . J Gen Virol 84:1001–1005 [CrossRef]
    [Google Scholar]
  47. Scott K. P., Kashiwazaki S., Reavy B., Harrison B. D. 1994; The nucleotide sequence of potato mop-top virus RNA 2: a novel type of genome organisation for a furovirus. J Gen Virol 75:3561–3568 [CrossRef]
    [Google Scholar]
  48. Shivprasad S., Pogue G. P., Lewandowski D. J., Hidalgo J., Donson J., Grill L. K., Dawson W. O. 1999; Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255:312–323 [CrossRef]
    [Google Scholar]
  49. Solovyev A. G., Savenkov E. I., Grdzelishvili V. Z., Kalinina N. O., Morozov S. Y., Schiemann J., Atabekov J. G. 1999; Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253:278–287 [CrossRef]
    [Google Scholar]
  50. Tang X., Frederick R. D., Zhou J., Halterman D. A., Jia Y., Martin G. B. 1996; Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060–2062 [CrossRef]
    [Google Scholar]
  51. Valkonen J. P. T. 2002; Natural resistance to viruses. In Plant Viruses as Molecular Pathogens pp  367–397 Edited by Khan J. A., Dijkstra J. New York, USA: Food Products Press;
    [Google Scholar]
  52. Voinnet O., Rivas S., Mestre P., Baulcombe D. 2003; An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 [CrossRef]
    [Google Scholar]
  53. White K. A., Mackie G. A. 1990; Control and expression of 3′ open reading frames in clover yellow mosaic virus. Virology 179:576–584 [CrossRef]
    [Google Scholar]
  54. Yelina N. E., Savenkov E. I., Solovyev A. G., Morozov S. Y., Valkonen J. P. T. 2002; Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76:12981–12991 [CrossRef]
    [Google Scholar]
  55. Yelina N. E., Erokhina T. N., Lukhovitskaya N. I., Minina E. A., Schepetilnikov M. V., Lesemann D.-E., Schiemann J., Solovyev A. G., Morozov S. Yu. 2005; Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for its ability to suppress RNA silencing. J Gen Virol 86:479–489 [CrossRef]
    [Google Scholar]
  56. Zamyatnin A. A. Jr, Solovyev A. G., Savenkov E. I., Germundsson A., Sandgren M., Valkonen J. P. T., Morozov S. Yu. 2004; Transient coexpression of individual genes encoded by the triple gene block of Potato mop-top virus reveals requirements for TGBp1 trafficking. Mol Plant Microbe Interact 17:921–930 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81099-0
Loading
/content/journal/jgv/10.1099/vir.0.81099-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error