1887

Abstract

Due to the continuous need for new vaccines, viral vaccine vectors have become increasingly attractive. In particular, herpes simplex virus type 1 (HSV-1)-based vectors offer many advantages, such as broad cellular tropism, large DNA-packaging capacity and the induction of pro-inflammatory responses. However, despite promising results obtained with HSV-1-derived vectors, the question of whether pre-existing virus-specific host immunity affects vaccine efficacy remains controversial. For this reason, the influence of pre-existing HSV-1-specific immunity on the immune response induced with a replication-defective, recombinant HSV-1 vaccine was investigated . It was shown that humoral as well as cellular immune responses against a model antigen encoded by the vaccine were strongly diminished in HSV-1-seropositive mice. This inhibition could be observed in mice infected with wild-type HSV-1 or with a replication-defective vector. Although these data clearly indicate that pre-existing antiviral host immunity impairs the efficacy of HSV-1-derived vaccine vectors, they also show that vaccination under these constraints might still be feasible.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81104-0
2005-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/9/vir862401.html?itemId=/content/journal/jgv/10.1099/vir.0.81104-0&mimeType=html&fmt=ahah

References

  1. Advani S. J., Weichselbaum R. R., Whitley R. J., Roizman B. 2002; Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 8:551–563 [CrossRef]
    [Google Scholar]
  2. Ahmad A., Sharif-Askari E., Fawaz L., Menezes J. 2000; Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J Virol 74:7196–7203 [CrossRef]
    [Google Scholar]
  3. Brockman M. A., Knipe D. M. 2002; Herpes simplex virus vectors elicit durable immune responses in the presence of preexisting host immunity. J Virol 76:3678–3687 [CrossRef]
    [Google Scholar]
  4. Bukowski J. F., Morita C. T., Brenner M. B. 1994; Recognition and destruction of virus-infected cells by human gamma delta CTL. J Immunol 153:5133–5140
    [Google Scholar]
  5. Burton E. A., Wechuck J. B., Wendell S. K., Goins W. F., Fink D. J., Glorioso J. C. 2001; Multiple applications for replication-defective herpes simplex virus vectors. Stem Cells 19:358–377 [CrossRef]
    [Google Scholar]
  6. Cassady K. A., Gross M., Roizman B. 1998; The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 72:7005–7011
    [Google Scholar]
  7. Chahlavi A., Rabkin S., Todo T., Sundaresan P., Martuza R. 1999; Effect of prior exposure to herpes simplex virus 1 on viral vector-mediated tumor therapy in immunocompetent mice. Gene Ther 6:1751–1758 [CrossRef]
    [Google Scholar]
  8. Coffin R. S., Thomas S. K., Thomas N. S. 11 other authors 1998; Pure populations of transduced primary human cells can be produced using GFP expressing herpes virus vectors and flow cytometry. Gene Ther 5:718–722 [CrossRef]
    [Google Scholar]
  9. Cunningham A. L., Mindel A., Dwyer D. E. 2000; Global epidemiology of sexually transmitted diseases. In Sexually Transmitted Disease pp  3–42 Edited by Stanberry L. R., Bernstein D. San Diego: Academic Press;
    [Google Scholar]
  10. Da Costa X. J., Brockman M. A., Alicot E., Ma M., Fischer M. B., Zhou X., Knipe D. M., Carroll M. C. 1999; Humoral response to herpes simplex virus is complement-dependent. Proc Natl Acad Sci U S A 96:12708–12712 [CrossRef]
    [Google Scholar]
  11. Deshpande S. P., Kumaraguru U., Rouse B. T. 2000; Why do we lack an effective vaccine against herpes simplex virus infections?. Microbes Infect 2:973–978 [CrossRef]
    [Google Scholar]
  12. Etlinger H. M., Altenburger W. 1991; Overcoming inhibition of antibody responses to a malaria recombinant vaccinia virus caused by prior exposure to wild type virus. Vaccine 9:470–472 [CrossRef]
    [Google Scholar]
  13. Farrell H. E., McLean C. S., Harley C., Efstathiou S., Inglis S., Minson A. C. 1994; Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. J Virol 68:927–932
    [Google Scholar]
  14. Feduchi E., Alonso M. A., Carrasco L. 1989; Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J Virol 63:1354–1359
    [Google Scholar]
  15. Friedman H. M., Wang L., Pangburn M. K., Lambris J. D., Lubinski J. 2000; Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol 165:4528–4536 [CrossRef]
    [Google Scholar]
  16. Fries L. F., Friedman H. M., Cohen G. H., Eisenberg R. J., Hammer C. H., Frank M. M. 1986; Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 137:1636–1641
    [Google Scholar]
  17. Geiss B. J., Smith T. J., Leib D. A., Morrison L. A. 2000; Disruption of virion host shutoff activity improves the immunogenicity and protective capacity of a replication-incompetent herpes simplex virus type 1 vaccine strain. J Virol 74:11137–11144 [CrossRef]
    [Google Scholar]
  18. Hardy W. R., Sandri-Goldin R. M. 1994; Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol 68:7790–7799
    [Google Scholar]
  19. Herrlinger U., Kramm C. M., Aboody-Guterman K. S. 9 other authors 1998; Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther 5:809–819 [CrossRef]
    [Google Scholar]
  20. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. 1995; Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415 [CrossRef]
    [Google Scholar]
  21. Hocknell P. K., Wiley R. D., Wang X., Evans T. G., Bowers W. J., Hanke T., Federoff H. J., Dewhurst S. 2002; Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific, and durable cellular and humoral immune responses. J Virol 76:5565–5580 [CrossRef]
    [Google Scholar]
  22. Hogquist K. A., Jameson S. C., Heath W. R., Howard J. L., Bevan M. J., Carbone F. R. 1994; T cell receptor antagonist peptides induce positive selection. Cell 76:17–27 [CrossRef]
    [Google Scholar]
  23. Huard J., Goins W. F., Glorioso J. C. 1995; Herpes simplex virus type 1 vector mediated gene transfer to muscle. Gene Ther 2:385–392
    [Google Scholar]
  24. Johnson D. C., Feenstra V. 1987; Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216
    [Google Scholar]
  25. Kadowaki N., Antonenko S., Lau J. Y., Liu Y. J. 2000; Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192:219–226 [CrossRef]
    [Google Scholar]
  26. Keadle T. L., Morrison L. A., Morris J. L., Pepose J. S., Stuart P. M. 2002; Therapeutic immunization with a virion host shutoff-defective, replication-incompetent herpes simplex virus type 1 strain limits recurrent herpetic ocular infection. J Virol 76:3615–3625 [CrossRef]
    [Google Scholar]
  27. Kleindienst P., Wiethe C., Lutz M. B., Brocker T. 2005; Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174:3941–3947 [CrossRef]
    [Google Scholar]
  28. Kodukula P., Liu T., Rooijen N. V., Jager M. J., Hendricks R. L. 1999; Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162:2895–2905
    [Google Scholar]
  29. Koelle D. M., Corey L. 2003; Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 16:96–113 [CrossRef]
    [Google Scholar]
  30. Krisky D. M., Wolfe D., Goins W. F., Marconi P. C., Ramakrishnan R., Mata M., Rouse R. J., Fink D. J., Glorioso J. C. 1998; Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5:1593–1603 [CrossRef]
    [Google Scholar]
  31. Kurts C., Miller J. F., Subramaniam R. M., Carbone F. R., Heath W. R. 1998; Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 188:409–414 [CrossRef]
    [Google Scholar]
  32. Kurts C., Sutherland R. M., Davey G., Li M., Lew A. M., Blanas E., Carbone F. R., Miller J. F., Heath W. R. 1999; CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc Natl Acad Sci U S A 96:12703–12707 [CrossRef]
    [Google Scholar]
  33. Lauterbach H., Kerksiek K. M., Busch D. H. 7 other authors 2004; Protection from bacterial infection by a single vaccination with replication-deficient mutant herpes simplex virus type 1. J Virol 78:4020–4028 [CrossRef]
    [Google Scholar]
  34. Li Z., Dullmann J., Schiedlmeier B. 12 other authors 2002; Murine leukemia induced by retroviral gene marking. Science 296:497 [CrossRef]
    [Google Scholar]
  35. Littler E., Purifoy D., Minson A., Powell K. L. 1983; Herpes simplex virus non-structural proteins. III. Function of the major DNA-binding protein. J Gen Virol 64:983–995 [CrossRef]
    [Google Scholar]
  36. Mandl S., Hix L., Andino R. 2001; Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J Virol 75:622–627 [CrossRef]
    [Google Scholar]
  37. Melchjorsen J., Pedersen F. S., Mogensen S. C., Paludan S. R. 2002; Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and ICP0. J Virol 76:2780–2788 [CrossRef]
    [Google Scholar]
  38. Mellerick D. M., Fraser N. W. 1987; Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158:265–275 [CrossRef]
    [Google Scholar]
  39. Mikloska Z., Cunningham A. L. 1998; Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 79:353–361
    [Google Scholar]
  40. Mikloska Z., Kesson A. M., Penfold M. E., Cunningham A. L. 1996; Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J Infect Dis 173:7–17 [CrossRef]
    [Google Scholar]
  41. Mikloska Z., Bosnjak L., Cunningham A. L. 2001; Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75:5958–5964 [CrossRef]
    [Google Scholar]
  42. Moriuchi S., Krisky D. M., Marconi P. C., Tamura M., Shimizu K., Yoshimine T., Cohen J. B., Glorioso J. C. 2000; HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther 7:1483–1490 [CrossRef]
    [Google Scholar]
  43. Morrison L. A., Knipe D. M. 1994; Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. J Virol 68:689–696
    [Google Scholar]
  44. Morrison L. A., Knipe D. M. 1996; Mechanisms of immunization with a replication-defective mutant of herpes simplex virus 1. Virology 220:402–413 [CrossRef]
    [Google Scholar]
  45. Morrison L. A., Knipe D. M. 1997; Contributions of antibody and T cell subsets to protection elicited by immunization with a replication-defective mutant of herpes simplex virus type 1. Virology 239:315–326 [CrossRef]
    [Google Scholar]
  46. Murphy C. G., Lucas W. T., Means R. E. 7 other authors 2000; Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol 74:7745–7754 [CrossRef]
    [Google Scholar]
  47. Nagashunmugam T., Lubinski J., Wang L., Goldstein L. T., Weeks B. S., Sundaresan P., Kang E. H., Dubin G., Friedman H. M. 1998; In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 72:5351–5359
    [Google Scholar]
  48. Neumann J., Eis-Hubinger A. M., Koch N. 2003; Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol 171:3075–3083 [CrossRef]
    [Google Scholar]
  49. Nopora A., Brocker T. 2002; Bcl-2 controls dendritic cell longevity in vivo. J Immunol 169:3006–3014 [CrossRef]
    [Google Scholar]
  50. Ogg P. D., McDonell P. J., Ryckman B. J., Knudson C. M., Roller R. J. 2004; The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 319:212–224 [CrossRef]
    [Google Scholar]
  51. Palmer J. A., Branston R. H., Lilley C. E., Robinson M. J., Groutsi F., Smith J., Latchman D. S., Coffin R. S. 2000; Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 74:5604–5618 [CrossRef]
    [Google Scholar]
  52. Papp Z., Babiuk L. A., Baca-Estrada M. E. 1999; The effect of pre-existing adenovirus-specific immunity on immune responses induced by recombinant adenovirus expressing glycoprotein D of bovine herpesvirus type 1. Vaccine 17:933–943 [CrossRef]
    [Google Scholar]
  53. Parr M. J., Wen P. Y., Schaub M., Khoury S. J., Sayegh M. H., Fine H. A. 1998; Immune parameters affecting adenoviral vector gene therapy in the brain. J Neurovirol 4:194–203 [CrossRef]
    [Google Scholar]
  54. Pollara G., Speidel K., Samady L., Rajpopat M., McGrath Y., Ledermann J., Coffin R. S., Katz D. R., Chain B. 2003; Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187:165–178 [CrossRef]
    [Google Scholar]
  55. Pushko P., Parker M., Ludwig G. V., Davis N. L., Johnston R. E., Smith J. F. 1997; Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239:389–401 [CrossRef]
    [Google Scholar]
  56. Samady L., Costigliola E., MacCormac L. 7 other authors; 2003; Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs-HSV vectors for dendritic cell-mediated immunotherapy. J Virol 77:3768–3776 [CrossRef]
    [Google Scholar]
  57. Schulick A. H., Vassalli G., Dunn P. F., Dong G., Rade J. J., Zamarron C., Dichek D. A. 1997; Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J Clin Invest 99:209–219 [CrossRef]
    [Google Scholar]
  58. Siegal F. P., Kadowaki N., Shodell M., Fitzgerald-Bocarsly P. A., Shah K., Ho S., Antonenko S., Liu Y. J. 1999; The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837 [CrossRef]
    [Google Scholar]
  59. Sloan D. D., Zahariadis G., Posavad C. M., Pate N. T., Kussick S. J., Jerome K. R. 2003; CTL are inactivated by herpes simplex virus-infected cells expressing a viral protein kinase. J Immunol 171:6733–6741 [CrossRef]
    [Google Scholar]
  60. Stanberry L. R., Cunningham A. L., Mindel A., Scott L. L., Spruance S. L., Aoki F. Y., Lacey C. J. 2000; Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis 30:549–566 [CrossRef]
    [Google Scholar]
  61. Thomas C. E., Ehrhardt A., Kay M. A. 2003; Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358 [CrossRef]
    [Google Scholar]
  62. Wade-Martins R., Saeki Y., Antonio Chiocca E. 2003; Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 7:604–612 [CrossRef]
    [Google Scholar]
  63. Wallace M. E., Keating R., Heath W. R., Carbone F. R. 1999; The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol 73:7619–7626
    [Google Scholar]
  64. Wang X., Wiley R. D., Evans T. G., Bowers W. J., Federoff H. J., Dewhurst S. 2003; Cellular immune responses to helper-free HSV-1 amplicon particles encoding HIV-1 gp120 are enhanced by DNA priming. Vaccine 21:2288–2297 [CrossRef]
    [Google Scholar]
  65. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J Virol 62:435–443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81104-0
Loading
/content/journal/jgv/10.1099/vir.0.81104-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error