1887

Abstract

Epstein–Barr virus (EBV) infection and growth activation of human B cells is central to virus biology and disease pathogenesis, but is poorly understood in quantitative terms. Here, using virus at defined m.o.i., the different stages of this process at the single-cell level are followed . Virus binding to the B-cell surface, assayed by quantitative PCR, is highly efficient, particularly at the low m.o.i. values that most likely reflect physiologic events . However, only 10–15 % of bound virus genomes reach the cell nucleus, as visualized by sensitive fluorescence hybridization (FISH) assay; viral genomes acquired per cell nucleus range from 1 to >10, depending on the m.o.i. Thereafter, despite differences in initial genome load, almost all nuclear genome-positive cells then go on to express the virus-encoded nuclear antigen EBNA2, upregulate the cell activation antigen CD23 and transit the cell cycle. EBNA2-positive cells in the first cycle post-infection then grow out to lymphoblastoid cell lines (LCLs) just as efficiently as do cells limiting-diluted from already established LCLs. This study therefore identifies EBV genome delivery to the nucleus as a key rate-limiting step in B-cell transformation, and highlights the remarkable efficiency with which a single virus genome, having reached the nucleus, then drives the transformation programme.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81153-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3009.html?itemId=/content/journal/jgv/10.1099/vir.0.81153-0&mimeType=html&fmt=ahah

References

  1. Allday M. J., Crawford D. H., Griffin B. E. 1989; Epstein–Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70:1755–1764 [CrossRef]
    [Google Scholar]
  2. Anagnostopoulos I., Hummel M., Kreschel C., Stein H. 1995; Morphology, immunophenotype, and distribution of latently and/or productively Epstein–Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein–Barr virus. Blood 85:744–750
    [Google Scholar]
  3. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. 1998; EBV persistence in memory B cells in vivo. Immunity 9:395–404 [CrossRef]
    [Google Scholar]
  4. Bohnsack J. F., Cooper N. R. 1988; CR2 ligands modulate human B cell activation. J Immunol 141:2569–2576
    [Google Scholar]
  5. Borza C. M., Hutt-Fletcher L. M. 2002; Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 8:594–599 [CrossRef]
    [Google Scholar]
  6. Delecluse H. J., Schuller S., Hammerschmidt W. 1993; Latent Marek's disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J 12:3277–3286
    [Google Scholar]
  7. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. 1998; Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95:8245–8250 [CrossRef]
    [Google Scholar]
  8. Everett R. D., Boutell C., Orr A. 2004; Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 78:1763–1774 [CrossRef]
    [Google Scholar]
  9. Feederle R., Kost M., Baumann M., Janz A., Drouet E., Hammerschmidt W., Delecluse H. J. 2000; The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089 [CrossRef]
    [Google Scholar]
  10. Fingeroth J. D., Weis J. J., Tedder T. F., Strominger J. L., Biro P. A., Fearon D. T. 1984; Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81:4510–4514 [CrossRef]
    [Google Scholar]
  11. Finke J., Rowe M., Kallin B., Ernberg I., Rosen A., Dillner J., Klein G. 1987; Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J Virol 61:3870–3878
    [Google Scholar]
  12. Frenkel N., Jacob R. J., Honess R. W., Hayward G. S., Locker H., Roizman B. 1975; Anatomy of herpes simplex virus DNA. III. Characterization of defective DNA molecules and biological properties of virus populations containing them. J Virol 16:153–167
    [Google Scholar]
  13. Gardella T., Medveczky P., Sairenji T., Mulder C. 1984; Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J Virol 50:248–254
    [Google Scholar]
  14. Gordon J., Walker L., Guy G., Brown G., Rowe M., Rickinson A. 1986; Control of human B-lymphocyte replication. II. Transforming Epstein–Barr virus exploits three distinct viral signals to undermine three separate control points in B-cell growth. Immunology 58:591–595
    [Google Scholar]
  15. Henderson E., Miller G., Robinson J., Heston L. 1977; Efficiency of transformation of lymphocytes by Epstein–Barr virus. Virology 76:152–163 [CrossRef]
    [Google Scholar]
  16. Hurley E. A., Thorley-Lawson D. A. 1988; B cell activation and the establishment of Epstein–Barr virus latency. J Exp Med 168:2059–2075 [CrossRef]
    [Google Scholar]
  17. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H. J. 2000; Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  18. Junying J., Herrmann K., Davies G. 8 other authors 2003; Absence of Epstein–Barr virus DNA in the tumor cells of European hepatocellular carcinoma. Virology 306:236–243 [CrossRef]
    [Google Scholar]
  19. Kieff E., Rickinson A. 2001; Epstein–Barr virus and its replication. In Fields Virology , 4th edn. pp  2511–2573 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott, Williams & Raven;
    [Google Scholar]
  20. Kurth J., Spieker T., Wustrow J., Strickler G. J., Hansmann L. M., Rajewsky K., Kuppers R. 2000; EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13:485–495 [CrossRef]
    [Google Scholar]
  21. Li Q., Turk S. M., Hutt-Fletcher L. M. 1995; The Epstein–Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol 69:3987–3994
    [Google Scholar]
  22. Li Q., Spriggs M. K., Kovats S., Turk S. M., Comeau M. R., Nepom B., Hutt-Fletcher L. M. 1997; Epstein–Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71:4657–4662
    [Google Scholar]
  23. Mark W., Sugden B. 1982; Transformation of lymphocytes by Epstein–Barr virus requires only one-fourth of the viral genome. Virology 122:431–443 [CrossRef]
    [Google Scholar]
  24. McLauchlan J., Addison C., Craigie M. C., Rixon F. J. 1992; Noninfectious L-particles supply functions which can facilitate infection by HSV-1. Virology 190:682–688 [CrossRef]
    [Google Scholar]
  25. Miller G., Robinson J., Heston L., Lipman M. 1974; Differences between laboratory strains of Epstein–Barr virus based on immortalization, abortive infection, and interference. Proc Natl Acad Sci U S A 71:4006–4010 [CrossRef]
    [Google Scholar]
  26. Moss D. J., Sculley T. B., Pope J. H. 1986; Induction of Epstein–Barr virus nuclear antigens. J Virol 58:988–990
    [Google Scholar]
  27. Murray P. G., Lissauer D., Junying J. 11 other authors 2003; Reactivity with a monoclonal antibody to Epstein-Barr virus (EBV) nuclear antigen 1 defines a subset of aggressive breast cancers in the absence of the EBV genome. Cancer Res 63:2338–2343
    [Google Scholar]
  28. Nalesnik M. A. 1997; Posttransplant lymphoproliferative disease of donor origin. Arch Pathol Lab Med 121:665–666
    [Google Scholar]
  29. Nemerow G. R., Cooper N. R. 1984; Infection of B lymphocytes by a human herpesvirus, Epstein–Barr virus, is blocked by calmodulin antagonists. Proc Natl Acad Sci U S A 81:4955–4959 [CrossRef]
    [Google Scholar]
  30. Neuhierl B., Feederle R., Hammerschmidt W., Delecluse H. J. 2002; Glycoprotein gp110 of Epstein–Barr virus determines viral tropism and efficiency of infection. Proc Natl Acad Sci U S A 99:15036–15041 [CrossRef]
    [Google Scholar]
  31. Niedobitek G., Agathanggelou A., Herbst H., Whitehead L., Wright D. H., Young L. S. 1997; Epstein–Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. J Pathol 182:151–159 [CrossRef]
    [Google Scholar]
  32. Polack A., Hartl G., Zimber U., Freese U. K., Laux G., Takaki K., Hohn B., Gissmann L., Bornkamm G. W. 1984; A complete set of overlapping cosmid clones of M-ABA virus derived from nasopharyngeal carcinoma and its similarity to other Epstein–Barr virus isolates. Gene 27:279–288 [CrossRef]
    [Google Scholar]
  33. Roberts M. L., Luxembourg A. T., Cooper N. R. 1996; Epstein–Barr virus binding to CD21, the virus receptor, activates resting B cells via an intracellular pathway that is linked to B cell infection. J Gen Virol 77:3077–3085 [CrossRef]
    [Google Scholar]
  34. Rooney C., Howe J. G., Speck S. H., Miller G. 1989; Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein–Barr virus. J Virol 63:1531–1539
    [Google Scholar]
  35. Seigneurin J. M., Vuillaume M., Lenoir G., De-The G. 1977; Replication of Epstein–Barr virus: ultrastructural and immunofluorescent studies of P3HR1-superinfected Raji cells. J Virol 24:836–845
    [Google Scholar]
  36. Smith K. O. 1964; Relationship between the envelope and the infectivity of herpes simplex virus. Proc Soc Exp Biol Med 115:814–816 [CrossRef]
    [Google Scholar]
  37. Sodeik B., Ebersold M. W., Helenius A. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021 [CrossRef]
    [Google Scholar]
  38. Sugano N., Chen W. P., Roberts M. L., Cooper N. R. 1997; Epstein–Barr virus binding to CD21 activates the initial viral promoter via NF-kappa B induction. J Exp Med 186:731–737 [CrossRef]
    [Google Scholar]
  39. Sugden B., Mark W. 1977; Clonal transformation of adult human leukocytes by Epstein–Barr virus. J Virol 23:503–508
    [Google Scholar]
  40. Sugden B., Phelps M., Domoradzki J. 1979; Epstein–Barr virus DNA is amplified in transformed lymphocytes. J Virol 31:590–595
    [Google Scholar]
  41. Tanner J., Weis J., Fearon D., Whang Y., Kieff E. 1987; Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50:203–213 [CrossRef]
    [Google Scholar]
  42. Thorley-Lawson D. A., Geilinger K. 1980; Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein–Barr virus neutralize infectivity. Proc Natl Acad Sci U S A 77:5307–5311 [CrossRef]
    [Google Scholar]
  43. Thorley-Lawson D. A., Mann K. P. 1985; Early events in Epstein–Barr virus infection provide a model for B cell activation. J Exp Med 162:45–59 [CrossRef]
    [Google Scholar]
  44. Tierney R. J., Kirby H., Nagra J., Rickinson A., Bell A. I. 2000; The Epstein–Barr virus promoter initiating B-cell transformation is activated by RFX proteins and the B-cell-specific activator protein BSAP/Pax5. J Virol 74:10458–10467 [CrossRef]
    [Google Scholar]
  45. Traggiai E., Becker S., Subbarao K., Kolesnikova L., Uematsu Y., Gismondo M. R., Murphy B. R., Rappuoli R., Lanzavecchia A. 2004; An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10:871–875 [CrossRef]
    [Google Scholar]
  46. Wang X., Hutt-Fletcher L. M. 1998; Epstein–Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J Virol 72:158–163
    [Google Scholar]
  47. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein–Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci U S A 84:3452–3456 [CrossRef]
    [Google Scholar]
  48. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. 1990; Epstein–Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–2318
    [Google Scholar]
  49. Watson D. H., Russell W. C., Wildy P. 1963; Electron microscopic particle counts on herpes virus using the phosphotungstate negative staining technique. Virology 19:250–260 [CrossRef]
    [Google Scholar]
  50. Woisetschlaeger M., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1990; Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A 87:1725–1729 [CrossRef]
    [Google Scholar]
  51. Young L., Alfieri C., Hennessy K. 7 other authors 1989; Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 321:1080–1085 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81153-0
Loading
/content/journal/jgv/10.1099/vir.0.81153-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error