1887

Abstract

(VACV) is the vaccine that was used to eradicate smallpox and is being developed as a recombinant vaccine for other pathogens. Removal of genes encoding immunomodulatory proteins expressed by VACV may enhance virus immunogenicity and improve its potential as a vaccine. Protein A41 is a candidate for removal, having sequence similarity to the VACV chemokine-binding protein, vCKBP, and an association with reduced inflammation during dermal infection. Here, it is shown that, at low doses, VACV strain Western Reserve (WR) lacking (vΔA41L) was slightly more virulent than wild-type and revertant controls after intranasal infection of BALB/c mice. The primary immune response to vΔA41L was marked by an increase in the percentage of VACV-specific gamma interferon-producing CD8 T cells and enhancement of cytotoxic T-cell responses in the spleen. However, this augmentation of cellular response was not seen in lung infiltrates. Splenic CD8 T-cell responses were also enhanced when VACV strain modified vaccinia virus Ankara (MVA) lacking was used to immunize mice. Lastly, immunization with VACV MVA lacking provided better protection than control viruses to subsequent challenge with a 300 LD dose of VACV WR. This study provides insight into the immunomodulatory role of A41 and suggests that MVA lacking A41 may represent a more efficacious vaccine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81417-0
2006-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/29.html?itemId=/content/journal/jgv/10.1099/vir.0.81417-0&mimeType=html&fmt=ahah

References

  1. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1996; A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93:11029–11034 [CrossRef]
    [Google Scholar]
  3. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 160:624–633
    [Google Scholar]
  4. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  5. Belyakov I. M., Earl P., Dzutsev A. & 8 other authors 2003; Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100:9458–9463 [CrossRef]
    [Google Scholar]
  6. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  7. Carroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211 [CrossRef]
    [Google Scholar]
  8. Deane D., McInnes C. J., Percival A. & 7 other authors 2000; Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J Virol 74:1313–1320 [CrossRef]
    [Google Scholar]
  9. Drexler I., Staib C., Kastenmüller W. & 8 other authors 2003; Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines. Proc Natl Acad Sci U S A 100:217–222 [CrossRef]
    [Google Scholar]
  10. Earl P. L., Americo J. L., Wyatt L. S. & 15 other authors 2004; Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428:182–185 [CrossRef]
    [Google Scholar]
  11. Estcourt M. J., Ramsay A. J., Brooks A., Thomson S. A., Medveckzy C. J., Ramshaw I. A. 2002; Prime–boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. Int Immunol 14:31–37 [CrossRef]
    [Google Scholar]
  12. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111
    [Google Scholar]
  13. Fenner F., Anderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 In Smallpox and Its Eradication Geneva: World Health Organization;
    [Google Scholar]
  14. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266 [CrossRef]
    [Google Scholar]
  15. Graham K. A., Lalani A. S., Macen J. L. 7 other authors 1997; The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229:12–24 [CrossRef]
    [Google Scholar]
  16. Hanke T., Blanchard T. J., Schneider J., Hannan C. M., Becker M., Gilbert S. C., Hill A. V. S., Smith G. L., McMichael A. 1998; Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 16:439–445 [CrossRef]
    [Google Scholar]
  17. Hussell T., Khan U., Openshaw P. 1997; IL-12 treatment attenuates T helper cell type 2 and B cell responses but does not improve vaccine-enhanced lung illness. J Immunol 159:328–334
    [Google Scholar]
  18. Kaech S. M., Wherry E. J., Ahmed R. 2002; Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262 [CrossRef]
    [Google Scholar]
  19. Kaufmann S. H. E., McMichael A. J. 2005; Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat Med 11:S33–S44 [CrossRef]
    [Google Scholar]
  20. Lane J. M., Ruben F. L., Neff J. M., Millar J. D. 1969; Complications of smallpox vaccination, 1968. N Engl J Med 281:1201–1208 [CrossRef]
    [Google Scholar]
  21. Lindell D. M., Standiford T. J., Mancuso P., Leshen Z. J., Huffnagle G. B. 2001; Macrophage inflammatory protein 1 α /CCL3 is required for clearance of an acute Klebsiella pneumoniae pulmonary infection. Infect Immun 69:6364–6369 [CrossRef]
    [Google Scholar]
  22. Loetscher M., Gerber B., Loetscher P., Jones S. A., Piali L., Clark-Lewis I., Baggiolini M., Moser B. 1996; Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969 [CrossRef]
    [Google Scholar]
  23. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach vol 2 pp  191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  24. Mahalingam S., Farber J. M., Karupiah G. 1999; The interferon-inducible chemokines MuMig and Crg-2 exhibit antiviral activity in vivo. J Virol 73:1479–1491
    [Google Scholar]
  25. Mayr A., Danner K. 1978; Vaccination against pox diseases under immunosuppressive conditions. Dev Biol Stand 41:225–234
    [Google Scholar]
  26. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038 [CrossRef]
    [Google Scholar]
  27. Miyahira Y., Murata K., Rodriguez D., Rodriguez J. R., Esteban M., Rodrigues M. M., Zavala F. 1995; Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181:45–54 [CrossRef]
    [Google Scholar]
  28. Moss B. 2001; Poxviridae : the viruses and their replication. In Fileds Virology , 4th edn. pp  2849–2883 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82:2095–2105
    [Google Scholar]
  30. Panicali D., Davis S. W., Weinberg R. L., Paoletti E. 1983; Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci U S A 80:5364–5368 [CrossRef]
    [Google Scholar]
  31. Reading P. C., Smith G. L. 2003; Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77:9960–9968 [CrossRef]
    [Google Scholar]
  32. Reading P. C., Symons J. A., Smith G. L. 2003a; A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 170:1435–1442 [CrossRef]
    [Google Scholar]
  33. Reading P. C., Moore J. B., Smith G. L. 2003b; Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278 [CrossRef]
    [Google Scholar]
  34. Schneider J., Gilbert S. C., Blanchard T. J. & 7 other authors 1998; Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4:397–402 [CrossRef]
    [Google Scholar]
  35. Smith G. L., Mackett M., Moss B. 1983; Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302:490–495 [CrossRef]
    [Google Scholar]
  36. Smith C. A., Smith T. D., Smolak P. J. & 9 other authors 1997; Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236:316–327 [CrossRef]
    [Google Scholar]
  37. Snyder J. T., Belyakov I. M., Dzutsev A., Lemonnier F., Berzofsky J. A. 2004; Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J Virol 78:7052–7060 [CrossRef]
    [Google Scholar]
  38. Spriggs M. K., Hruby D. E., Maliszewski C. R., Pickup D. J., Sims J. E., Buller R. M. L., VanSlyke J. 1992; Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71:145–152 [CrossRef]
    [Google Scholar]
  39. Staib C., Drexler I., Sutter G. 2004; Construction and isolation of recombinant MVA. Methods Mol Biol 269:77–100
    [Google Scholar]
  40. Staib C., Kisling S., Erfle V., Sutter G. 2005; Inactivation of the viral interleukin 1 β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86:1997–2006 [CrossRef]
    [Google Scholar]
  41. Stickl H., Hochstein-Mintzel V., Mayr A., Huber H. C., Schafer H., Holzner A. 1974; MVA vaccination against smallpox: clinical tests with an attenuated live vaccinia virus strain (MVA). Dtsch Med Wochenschr 99:2386–2392 (in German [CrossRef]
    [Google Scholar]
  42. Stittelaar K. J., Kuiken T., de Swart R. L. 8 other authors 2001; Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19:3700–3709 [CrossRef]
    [Google Scholar]
  43. Stittelaar K. J., van Amerongen G., Kondova I. & 9 other authors 2005; Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J Virol 79:7845–7851 [CrossRef]
    [Google Scholar]
  44. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851 [CrossRef]
    [Google Scholar]
  45. Sutter G., Moss B. 1995; Novel vaccinia vector derived from the host range restricted and highly attenuated MVA strain of vaccinia virus. Dev Biol Stand 84:195–200
    [Google Scholar]
  46. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844
    [Google Scholar]
  47. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755
    [Google Scholar]
  48. Tscharke D. C., Smith G. L. 2002; Notes on transient host range selection for engineering vaccinia virus strain MVA. Biotechniques 33:186–188
    [Google Scholar]
  49. Tscharke D. C., Karupiah G., Zhou J. & 8 other authors 2005; Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104 [CrossRef]
    [Google Scholar]
  50. Wyatt L. S., Earl P. L., Eller L. A., Moss B. 2004; Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci U S A 101:4590–4595 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81417-0
Loading
/content/journal/jgv/10.1099/vir.0.81417-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error