1887

Abstract

Scrapie prion rods isolated from hamster and non-infectious aggregates of the corresponding recombinant protein rPrP(90–231) were incubated with hydrochloric acid. The amount of PrP and of infectivity that survived incubation in HCl at varying times, acid concentrations and temperatures was quantified by Western blot densitometry and bioassays, respectively. Prion rods and rPrP aggregates showed similar HCl hydrolysis kinetics of PrP, indicating structural homology. For 1 M HCl and 25 °C, the rate of PrP hydrolysis follows first-order kinetics at 0·014 h; the rate of infectivity inactivation is 0·54 h. Hydrolysis for 1 h at 25 °C was only slightly proportional to HCl concentration up to 5 M, but complete loss of infectivity and PrP reduction to <2 % was observed at 8 M HCl. The temperature dependence of unhydrolysed PrP, as well as infectivity at 1 M HCl for 1 h, showed a slight decrease up to 45 °C, but a sigmoidal decrease by several orders of magnitude at higher temperatures. The slow hydrolysis of PrP and inactivation of infectivity by acid treatment at room temperature are attributed to solvent inaccessibility of prion rods and rPrP aggregates, respectively. The more effective hydrolysis and inactivation at temperatures above 45 °C are interpreted as thermally induced disaggregation with an activation energy of 50–60 kJ mol. Most importantly, infectivity was always inactivated faster or to a higher extent than PrP was hydrolysed at several incubation times, HCl concentrations and temperatures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81426-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1385.html?itemId=/content/journal/jgv/10.1099/vir.0.81426-0&mimeType=html&fmt=ahah

References

  1. Aguzzi A., Heikenwalder M. 2003; Prion diseases: cannibals and garbage piles. Nature 423:127–129
    [Google Scholar]
  2. Appel T. R., Dumpitak C., Matthiesen U., Riesner D. 1999; Prion rods contain an inert polysaccharide scaffold. Biol Chem 380:1295–1306
    [Google Scholar]
  3. Appel T. R., Wolff M., von Rheinbaben F., Heinzel M., Riesner D. 2001; Heat stability of prion rods and recombinant prion protein in water, lipid and lipid–water mixtures. J Gen Virol 82:465–473
    [Google Scholar]
  4. Beekes M., Baldauf E., Diringer H. 1996; Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol 77:1925–1934 [CrossRef]
    [Google Scholar]
  5. Brown P., Rohwer R. G., Gajdusek D. C. 1986; Newer data on the inactivation of scrapie virus or Creutzfeldt-Jakob disease virus in brain tissue. J Infect Dis 153:1145–1148 [CrossRef]
    [Google Scholar]
  6. Brown P., Liberski P. P., Wolff A., Gajdusek D. C. 1990; Resistance of scrapie infectivity to steam autoclaving after formaldehyde fixation and limited survival after ashing at 360 degrees C: practical and theoretical implications. J Infect Dis 161:467–472 [CrossRef]
    [Google Scholar]
  7. Budka H., Aguzzi A., Brown P. & 7 other authors 1995; Tissue handling in suspected Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases. Brain Pathol 5:319–322 [CrossRef]
    [Google Scholar]
  8. Chesebro B. W. 1991; Transmissible spongiform encephalopathies: scrapie, BSE and related human disorders. Curr Top Microbiol Immunol 172:1–288
    [Google Scholar]
  9. Collinge J. 2001; Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550 [CrossRef]
    [Google Scholar]
  10. Danner K. 1991; Übertragung spongiformer Encephalopathien durch Arzneimittel, Grundzüge einer Risikobetrachtung. Pharm Ind 53:614–619 (in German
    [Google Scholar]
  11. Darbord J. C. 1999; Inactivation of prions in daily medical practice. Biomed Pharmacother 53:34–38 [CrossRef]
    [Google Scholar]
  12. DeArmond S. J., Prusiner S. B. 2003; Perspectives on prion biology, prion disease pathogenesis, and pharmacologic approaches to treatment. Clin Lab Med 23:1–41 [CrossRef]
    [Google Scholar]
  13. Diener T. O., McKinley M. P., Prusiner S. B. 1982; Viroids and prions. Proc Natl Acad Sci U S A 79:5220–5224 [CrossRef]
    [Google Scholar]
  14. Diringer H., Beekes M., Özel M., Simon D., Queck I., Cardone F., Pocchiari M., Ironside J. W. 1997; Highly infectious purified preparations of disease-specific amyloid of transmissible spongiform encephalopathies are not devoid of nucleic acids of viral size. Intervirology 40:238–246 [CrossRef]
    [Google Scholar]
  15. Ernst D. R., Race R. E. 1993; Comparative analysis of scrapie agent inactivation methods. J Virol Methods 41:193–201 [CrossRef]
    [Google Scholar]
  16. Gabizon R., McKinley M. P., Groth D., Westaway D., DeArmond S. J., Carlson G. A., Prusiner S. B. 1989; Immunoaffinity purification and neutralization of scrapie prions. Prog Clin Biol Res 317:583–600
    [Google Scholar]
  17. Hörnlimann B., Riesner D., Kretzschmar H. (editors) 2001 Prionen und Prionkrankheiten Berlin: Walter de Gruyter (in German;
    [Google Scholar]
  18. Jakubke H.-D., Jeschkeit H. 1983; Proteins. In Concise Encyclopedia of Biochemistry pp  380–381 Translated by Scott T., Brewer M. New York: Walter de Gruyter;
    [Google Scholar]
  19. Jansen K., Schäfer O., Birkmann E., Post K., Serban H., Prusiner S. B., Riesner D. 2001; Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form. Biol Chem 382:683–691
    [Google Scholar]
  20. Kascsak R. J., Rubenstein R., Merz P. A., Tonna-DeMasi M., Fersko R., Carp R. I., Wisniewski H. M., Diringer H. 1987; Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J Virol 61:3688–3693
    [Google Scholar]
  21. Kellner R., Lottspeich F., Meyer H. E. 1999; Microcharacterization of Proteins . , 2nd edn. pp  121–123 Weinheim: Wiley-VCH;
  22. Kimberlin R. H., Walker C. A., Millson G. C., Taylor D. M., Robertson P. A., Tomlinson A. H., Dickinson A. G. 1983; Disinfection studies with two strains of mouse-passaged scrapie agent. Guidelines for Creutzfeldt-Jakob and related agents. J Neurol Sci 59:355–369 [CrossRef]
    [Google Scholar]
  23. Klein T. R., Kirsch D., Kaufmann R., Riesner D. 1998; Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379:655–666
    [Google Scholar]
  24. Legname G., Baskakov I. V., Nguyen H.-O. B., Riesner D., Cohen F. E., DeArmond S. J., Prusiner S. B. 2004; Synthetic mammalian prions. Science 305:673–676 [CrossRef]
    [Google Scholar]
  25. Manuelidis L. 1997; Decontamination of Creutzfeldt-Jakob disease and other transmissible agents. J Neurovirol 3:62–65 [CrossRef]
    [Google Scholar]
  26. Manuelidis L., Sklaviadis T., Manuelidis E. E. 1987; Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. EMBO J 6:341–347
    [Google Scholar]
  27. Martinsen T. C., Taylor D. M., Johnsen R., Waldum H. L. 2002; Gastric acidity protects mice against prion infection?. Scand J Gastroenterol 37:497–500
    [Google Scholar]
  28. McKinley M. P., Bolton D. C., Prusiner S. B. 1983; A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62 [CrossRef]
    [Google Scholar]
  29. McKinley M. P., Meyer R. K., Kenaga L., Rahbar F., Cotter R., Serban A., Prusiner S. B. 1991; Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 65:1340–1351
    [Google Scholar]
  30. Mehlhorn I., Groth D., Stöckel J. & 10 other authors 1996; High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35:5528–5537 [CrossRef]
    [Google Scholar]
  31. Mould D. L., Dawson A. M., Smith W. 1965; Scrapie in mice. The stability of the agent to various suspending media, pH and solvent extraction. Res Vet Sci 36:151–154
    [Google Scholar]
  32. Oberthür R. C. 2001; Die Inaktivierung von Prionen durch Hitze. In Prionen und Prionkrankheiten pp  389–398 Edited by Hörnlimann B., Riesner D., Kretzschmar H. Berlin: Walter de Gruyter (in German;
    [Google Scholar]
  33. Priola S. A., Chesebro B., Caughey B. 2003; A view from the top – prion diseases from 10,000 feet. Science 300:917–919 [CrossRef]
    [Google Scholar]
  34. Prusiner S. B. 1982; Novel proteinaceous infectious particles cause scrapie. Science 216:136–144 [CrossRef]
    [Google Scholar]
  35. Prusiner S. B. 1998; Prions. Proc Natl Acad Sci U S A 95:13363–13383 [CrossRef]
    [Google Scholar]
  36. Prusiner S. B. 2001; Neurodegenerative diseases and prions. N Engl J Med 344:1516–1526 [CrossRef]
    [Google Scholar]
  37. Prusiner S. B., Groth D. F., McKinley M. P., Cochran S. P., Bowman K. A., Kasper K. C. 1981; Thiocyanate and hydroxyl ions inactivate the scrapie agent. Proc Natl Acad Sci U S A 78:4606–4610 [CrossRef]
    [Google Scholar]
  38. Prusiner S. B., Bolton D. C., Groth D. F., Bowman K. A., Cochran S. P., McKinley M. P. 1982a; Further purification and characterization of scrapie prions. Biochemistry 21:6942–6950 [CrossRef]
    [Google Scholar]
  39. Prusiner S. B., Cochran S. P., Groth D. F., Downey D. E., Bowman K. A., Martinez H. M. 1982b; Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11:353–358 [CrossRef]
    [Google Scholar]
  40. Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., Glenner G. G. 1983; Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358 [CrossRef]
    [Google Scholar]
  41. Riesner D. 2001; The prion theory: background and basic information. Contrib Microbiol 7:7–20
    [Google Scholar]
  42. Riesner D., Kellings K., Post K., Wille H., Serban H., Groth D., Baldwin M. A., Prusiner S. B. 1996; Disruption of prion rods generates 10-nm spherical particles having high α -helical content and lacking scrapie infectivity. J Virol 70:1714–1722
    [Google Scholar]
  43. Safar J. G., Kellings K., Serban H., Groth D., Cleaver J. E., Prusiner S. B., Riesner D. 2005; Search for a prion-specific nucleic acid. J Virol 79:10796–10806 [CrossRef]
    [Google Scholar]
  44. Somerville R. A., Oberthür R. C., Havekost U., MacDonald F., Taylor D. M., Dickinson A. G. 2002; Characterization of thermodynamic diversity between transmissible spongiform encephalopathy agent strains and its theoretical implications. J Biol Chem 277:11084–11089 [CrossRef]
    [Google Scholar]
  45. Taylor D. M. 2000; Inactivation of transmissible degenerative encephalopathy agents: a review. Vet J 159:10–17 [CrossRef]
    [Google Scholar]
  46. Taylor D. M., Fraser H., McConnell I., Brown D. A., Brown K. L., Lamza K. A., Smith G. R. A. 1994; Decontamination studies with the agents of bovine spongiform encephalopathy and scrapie. Arch Virol 139:313–326 [CrossRef]
    [Google Scholar]
  47. Taylor D. M., Fernie K., Steele P. J., McConnell I., Somerville R. A. 2002; Thermostability of mouse-passaged BSE and scrapie is independent of host PrP genotype: implications for the nature of the causal agents. J Gen Virol 83:3199–3204
    [Google Scholar]
  48. Weissmann C. 1991; A ‘unified theory’ of prion propagation. Nature 352:679–683 [CrossRef]
    [Google Scholar]
  49. Wille H., Prusiner S. B., Cohen F. E. 2000; Scrapie infectivity is independent of amyloid staining properties of the N-terminally truncated prion protein. J Struct Biol 130:323–338 [CrossRef]
    [Google Scholar]
  50. Wille H., Michelitsch M. D., Guénebaut V., Supattapone S., Serban A., Cohen F. E., Agard D. A., Prusiner S. B. 2002; Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci U S A 99:3563–3568 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81426-0
Loading
/content/journal/jgv/10.1099/vir.0.81426-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error