1887

Abstract

Human respiratory syncytial virus (HRSV) phosphoprotein (P), an essential cofactor of the viral polymerase, is much shorter (241 aa) than and has no sequence similarity to P of other paramyxoviruses. Nevertheless, bioinformatic analysis of HRSV P sequence revealed a modular organization, reminiscent of other paramyxovirus Ps, with a central structured domain (aa 100–200), flanked by two intrinsically disordered regions (1–99 and 201–241). To test the predicted structure experimentally, HRSV P was purified from cell extracts infected with recombinant vaccinia virus or HRSV. The estimated molecular mass of P by gel filtration (∼500 kDa) greatly exceeded the theoretical mass of a homotetramer, proposed as the oligomeric form of native P. Nevertheless, the profile of cross-linked products obtained with purified P resembled that reported by others with P purified from bacteria or mammalian cells. Thus, the shape of HRSV P probably influences its elution from the gel filtration column, as reported for other paramyxovirus Ps. Digestion of purified HRSV P with different proteases identified a trypsin-resistant fragment (X) that reacted with a previously characterized monoclonal antibody (021/2P). N-terminal sequencing and mass spectrometry analysis placed the X fragment boundaries (Glu-104 and Arg-163) within the predicted structured domain of P. Cross-linking and circular dichroism analyses indicated that fragment X was oligomeric, with a high -helical content, properties resembling those of the multimerization domain of Sendai and rinderpest virus P. These results denote structural features shared by HRSV and other paramyxovirus Ps and should assist in elucidation of the HRSV P structure.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81430-0
2006-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/159.html?itemId=/content/journal/jgv/10.1099/vir.0.81430-0&mimeType=html&fmt=ahah

References

  1. Alansari H., Potgieter L. N. 1994; Molecular cloning and sequence analysis of the phosphoprotein, nucleocapsid protein, matrix protein and 22K (M2) protein of the ovine respiratory syncytial virus. J Gen Virol 75:3597–3601 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Asenjo A., Villanueva N. 2000; Regulated but not constitutive human respiratory syncytial virus (HRSV) P protein phosphorylation is essential for oligomerization. FEBS Lett 467:279–284 [CrossRef]
    [Google Scholar]
  4. Asenjo A., Rodríguez L., Villanueva N. 2005; Determination of phosphorylated residues from human respiratory syncytial virus P protein that are dynamically dephosphorylated by cellular phosphatases: a possible role for serine 54. J Gen Virol 86:1109–1120 [CrossRef]
    [Google Scholar]
  5. Bairoch A., Apweiler R. 2000; The swiss-prot protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45–48 [CrossRef]
    [Google Scholar]
  6. Barik S., McLean T., Depuy L. C. 1995; Phosphorylation of Ser232 directly regulates the transcription activity of the P protein of human respiratory syncytial virus: phosphorylation of Ser237 may play an accessory role. Virology 213:405–412 [CrossRef]
    [Google Scholar]
  7. Bermingham A., Collins P. L. 1999; The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc Natl Acad Sci U S A 96:11259–11264 [CrossRef]
    [Google Scholar]
  8. Blanchard L., Tarbouriech N., Blackledge M., Timmins P., Burmeister W. P., Ruigrok R. W. H., Marion D. 2004; Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution. Virology 319:201–211 [CrossRef]
    [Google Scholar]
  9. Blasco R., Moss B. 1995; Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158:157–162 [CrossRef]
    [Google Scholar]
  10. Callebaut I., Courvalin J.-C., Worman H. J., Mornon J.-P. 1997; Hydrophobic cluster analysis reveals a third chromodomain in the Tetrahymena Pdd1p protein of the chromo family. Biochem Biophys Res Commun 235:103–107 [CrossRef]
    [Google Scholar]
  11. Caravokyri C., Pringle C. R. 1992; Effect of changes in the nucleotide sequence of the P gene of respiratory syncytial virus on the electrophoretic mobility of the P protein. Virus Genes 6:53–62 [CrossRef]
    [Google Scholar]
  12. Castagné N., Barbier A., Bernard J., Rezaei H., Huet J.-C., Henry C., Da Costa B., Eléouët J. F. 2004; Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J Gen Virol 85:1643–1653 [CrossRef]
    [Google Scholar]
  13. Collins P. L., Hill M. G., Cristina J., Grosfeld H. 1996; Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A 93:81–85 [CrossRef]
    [Google Scholar]
  14. Collins P. L., Chanock R. M., Murphy B. R. 2001; Respiratory syncytial virus. In Fields Virology pp  1443–1484 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  15. Curran J. 1998; A role for the Sendai virus P protein trimer in RNA synthesis. J Virol 72:4274–4280
    [Google Scholar]
  16. Curran J., Marq J. B., Kolakofsky D. 1995; An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol 69:849–855
    [Google Scholar]
  17. Ferron F., Rancurel C., Longhi S., Cambillau C., Henrissat B., Canard B. 2005; VaZyMolO: a tool to define and classify modularity in viral proteins. J Gen Virol 86:743–749 [CrossRef]
    [Google Scholar]
  18. García J., García-Barreno B., Vivo A., Melero J. A. 1993a; Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein. Virology 195:243–247 [CrossRef]
    [Google Scholar]
  19. García J., García-Barreno B., Martinez I., Melero J. A. 1993b; Mapping of monoclonal antibody epitopes of the human respiratory syncytial virus P protein. Virology 195:239–242 [CrossRef]
    [Google Scholar]
  20. García-Barreno B., Delgado T., Melero J. A. 1996; Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: significance for nucleocapsid assembly and formation of cytoplasmic inclusions. J Virol 70:801–808
    [Google Scholar]
  21. Gouet P., Courcelle E., Stuart D. I., Métoz F. 1999; ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308 [CrossRef]
    [Google Scholar]
  22. Huang Y. T., Wertz G. W. 1982; The genome of respiratory syncytial virus is a negative-stranded RNA that codes for at least seven mRNA species. J Virol 43:150–157
    [Google Scholar]
  23. Johansson K., Bourhis J.-M., Campanacci V., Cambillau C., Canard B., Longhi S. 2003; Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278:44567–44573 [CrossRef]
    [Google Scholar]
  24. Johnson P. R., Collins P. L. 1990; Sequence comparison of the phosphoprotein mRNAs of antigenic subgroups A and B of human respiratory syncytial virus identifies a highly divergent domain in the predicted protein. J Gen Virol 71:481–485 [CrossRef]
    [Google Scholar]
  25. Karlin D., Ferron F., Canard B., Longhi S. 2003; Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84:3239–3252 [CrossRef]
    [Google Scholar]
  26. Khattar S. K., Yunus A. S., Samal S. K. 2001; Mapping the domains on the phosphoprotein of bovine respiratory syncytial virus required for N–P and P–L interactions using a minigenome system. J Gen Virol 82:775–779
    [Google Scholar]
  27. Kingston R. L., Hamel D. J., Gay L. S., Dahlquist F. W., Matthews B. W. 2004; Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci U S A 101:8301–8306 [CrossRef]
    [Google Scholar]
  28. Li X., Romero P., Rani M., Dunker A. K., Obradovic Z. 1999; Predicting protein disorder for N-, C- and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40
    [Google Scholar]
  29. Linding R., Jensen L. J., Diella F., Bork P., Gibson T. J., Russell R. B. 2003a; Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459 [CrossRef]
    [Google Scholar]
  30. Linding R., Russell R. B., Neduva V., Gibson T. J. 2003b; GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708 [CrossRef]
    [Google Scholar]
  31. Longhi S., Receveur-Bréchot V., Karlin D., Johansson K., Darbon H., Bhella D., Yeo R., Finet S., Canard B. 1993; The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648
    [Google Scholar]
  32. Lopez J. A., Villanueva N., Melero J. A., Portela A. 1988; Nucleotide sequence of the fusion and phosphoprotein genes of human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneity. Virus Res 10:249–261 [CrossRef]
    [Google Scholar]
  33. Lupas A., van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science 252:1162–1164 [CrossRef]
    [Google Scholar]
  34. Mallipeddi S. K., Samal S. K. 1992; Sequence comparison between the phosphoprotein mRNAs of human and bovine respiratory syncytial viruses identifies a divergent domain in the predicted protein. J Gen Virol 73:2441–2444 [CrossRef]
    [Google Scholar]
  35. Mason S. W., Aberg E., Lawetz C., DeLong R., Whitehead P., Liuzzi M. 2003; Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 77:10670–10676 [CrossRef]
    [Google Scholar]
  36. McGuffin L. J., Bryson K., Jones D. T. 2000; The psipred protein structure prediction server. Bioinformatics 16:404–405 [CrossRef]
    [Google Scholar]
  37. Mink M. A. D., Stec S., Collins P. L. 1991; Nucleotide sequences of the 3′ leader and 5′ trailer regions of the human respiratory syncytial virus genomic RNA. Virology 185:615–624 [CrossRef]
    [Google Scholar]
  38. Morris M. C., Mery J., Heitz A., Heitz F., Divita G. 1999; Design and synthesis of a peptide derived from positions 195–244 of human cdc25C phosphatase. J Pept Sci 5:263–271 [CrossRef]
    [Google Scholar]
  39. Navarro J., Lopez-Otin C., Villanueva N. 1991; Location of phosphorylated residues in human respiratory syncytial virus phosphoprotein. J Gen Virol 72:1455–1459 [CrossRef]
    [Google Scholar]
  40. Rahaman A., Srinivasan N., Shamala N., Shaila M. S. 2004; Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279:23606–23614 [CrossRef]
    [Google Scholar]
  41. Rost B. 1996; phd: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539
    [Google Scholar]
  42. Sanchez-Seco M. P., Navarro J., Martinez R., Villanueva N. 1995; C-terminal phosphorylation of human respiratory syncytial virus P protein occurs mainly at serine residue 232. J Gen Virol 76:425–430 [CrossRef]
    [Google Scholar]
  43. Satake M., Elango N., Venkatesan S. 1984; Sequence analysis of the respiratory syncytial virus phosphoprotein gene. J Virol 52:991–994
    [Google Scholar]
  44. Schlender J., Bossert B., Buchholz U., Conzelmann K.-K. 2000; Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J Virol 74:8234–8242 [CrossRef]
    [Google Scholar]
  45. Spann K. M., Tran K.-C., Chi B., Rabin R. L., Collins P. L. 2004; Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J Virol 78:4363–4369 [CrossRef]
    [Google Scholar]
  46. Suckau D., Resemann A., Schuerenberg M., Hufnagel P., Franzen J., Holle A. 2003; A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376:952–965 [CrossRef]
    [Google Scholar]
  47. Tarbouriech N., Curran J., Ebel C., Ruigrok R. W. H., Burmeister W. P. 2000a; On the domain structure and the polymerization state of the Sendai virus P protein. Virology 266:99–109 [CrossRef]
    [Google Scholar]
  48. Tarbouriech N., Curran J., Ruigrok R. W. H., Burmeister W. P. 2000b; Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat Struct Biol 7:777–781 [CrossRef]
    [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  50. Ward J. J., McGuffin L. J., Bryson K., Buxton B. F., Jones D. T. 2004; The disopred server for the prediction of protein disorder. Bioinformatics 20:2138–2139 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81430-0
Loading
/content/journal/jgv/10.1099/vir.0.81430-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error