1887

Abstract

Dystroglycan (DG) is an extracellular matrix receptor necessary for the development of metazoans from flies to humans and is also an entry route for various pathogens. (LCMV), a member of the family , infects by binding to -DG. Here, the role of cholesterol lipid rafts in infection by LCMV via -DG was investigated. The cholesterol-sequestering drugs methyl--cyclodextrin (MCD), filipin and nystatin inhibited the infectivity of LCMV selectively, but did not affect infection by vesicular stomatitis virus. Cholesterol loading after depletion with MCD restored infectivity to control levels. DG was not found in lipid rafts identified with the raft marker ganglioside GM1. Treatment with MCD, however, enhanced the solubility of DG. This may reflect the association of DG with cholesterol outside lipid rafts and suggests that association of DG with non-raft cholesterol is critical for infection by LCMV through -DG.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81444-0
2006-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/673.html?itemId=/content/journal/jgv/10.1099/vir.0.81444-0&mimeType=html&fmt=ahah

References

  1. Abrami L., Liu S., Cosson P., Leppla S. H., van der Goot F. G. 2003; Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328 [CrossRef]
    [Google Scholar]
  2. Battegay M., Cooper S., Althage A., Banziger J., Hengartner H., Zinkernagel R. M. 1991; Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33:191–198 [CrossRef]
    [Google Scholar]
  3. Borrow P., Oldstone M. B. A. 1994; Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198:1–9 [CrossRef]
    [Google Scholar]
  4. Bowe M. A., Mendis D. B., Fallon J. R. 2000; The small leucine-rich repeat proteoglycan biglycan binds to α -dystroglycan and is upregulated in dystrophic muscle. J Cell Biol 148:801–810 [CrossRef]
    [Google Scholar]
  5. Brown D. A., Rose J. K. 1992; Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544 [CrossRef]
    [Google Scholar]
  6. Cao W., Henry M. D., Borrow P. & 7 other authors 1998; Identification of α -dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081 [CrossRef]
    [Google Scholar]
  7. Chamberlain L. H. 2004; Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5 [CrossRef]
    [Google Scholar]
  8. Chamberlain J. S., Corrado K., Rafael J. A., Cox G. A., Hauser M., Lumeng C. 1997; Interactions between dystrophin and the sarcolemma membrane. Soc Gen Physiol Ser 52:19–29
    [Google Scholar]
  9. Côté P. D., Moukhles H., Lindenbaum M., Carbonetto S. 1999; Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat Genet 23:338–342 [CrossRef]
    [Google Scholar]
  10. Cottin V., Doan J. E. S., Riches D. W. H. 2002; Restricted localization of the TNF receptor CD120a to lipid rafts: a novel role for the death domain. J Immunol 168:4095–4102 [CrossRef]
    [Google Scholar]
  11. Danthi P., Chow M. 2004; Cholesterol removal by methyl- β -cyclodextrin inhibits poliovirus entry. J Virol 78:33–41 [CrossRef]
    [Google Scholar]
  12. del Pozo M. A., Alderson N. B., Kiosses W. B., Chiang H.-H., Anderson R. G. W., Schwartz M. A. 2004; Integrins regulate Rac targeting by internalization of membrane domains. Science 303:839–842 [CrossRef]
    [Google Scholar]
  13. Dillon S. R., Mancini M., Rosen A., Schlissel M. S. 2000; Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J Immunol 164:1322–1332 [CrossRef]
    [Google Scholar]
  14. Douville P. J., Harvey W. J., Carbonetto S. 1988; Isolation and partial characterization of high affinity laminin receptors in neural cells. J Biol Chem 263:14964–14969
    [Google Scholar]
  15. Doyle D. D., Goings G. E., Upshaw-Earley J., Page E., Ranscht B., Palfrey H. C. 1998; T-cadherin is a major glycophosphoinositol-anchored protein associated with noncaveolar detergent-insoluble domains of the cardiac sarcolemma. J Biol Chem 273:6937–6943 [CrossRef]
    [Google Scholar]
  16. Drevot P., Langlet C., Guo X.-J., Bernard A.-M., Colard O., Chauvin J.-P., Lasserre R., He H.-T. 2002; TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 21:1899–1908 [CrossRef]
    [Google Scholar]
  17. Elortza F., Nühse T. S., Foster L. J., Stensballe A., Peck S. C., Jensen O. N. 2003; Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2:1261–1270 [CrossRef]
    [Google Scholar]
  18. Ervasti J. M., Campbell K. P. 1991; Membrane organization of the dystrophin–glycoprotein complex. Cell 66:1121–1131 [CrossRef]
    [Google Scholar]
  19. Ervasti J. M., Campbell K. P. 1993; A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823 [CrossRef]
    [Google Scholar]
  20. Gee S. H., Montanaro F., Lindenbaum M. H., Carbonetto S. 1994; Dystroglycan- α , a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77:675–686 [CrossRef]
    [Google Scholar]
  21. Guirland C., Suzuki S., Kojima M., Lu B., Zheng J. Q. 2004; Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62 [CrossRef]
    [Google Scholar]
  22. Gustavsson J., Parpal S., Karlsson M. & 7 other authors 1999; Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971
    [Google Scholar]
  23. Henry M. D., Campbell K. P. 1996; Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr Opin Cell Biol 8:625–631 [CrossRef]
    [Google Scholar]
  24. Ibraghimov-Beskrovnaya O., Ervasti J. M., Leveille C. J., Slaughter C. A., Sernett S. W., Campbell K. P. 1992; Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702 [CrossRef]
    [Google Scholar]
  25. Ilangumaran S., Hoessli D. C. 1998; Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335:433–440
    [Google Scholar]
  26. Ilsley J. L., Sudol M., Winder S. J. 2002; The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal 14:183–189 [CrossRef]
    [Google Scholar]
  27. James M., Nuttall A., Ilsley J. L., Ottersbach K., Tinsley J. M., Sudol M., Winder S. J. 2000; Adhesion-dependent tyrosine phosphorylation of β -dystroglycan regulates its interaction with utrophin. J Cell Sci 113:1717–1726
    [Google Scholar]
  28. Keller P., Simons K. 1998; Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367 [CrossRef]
    [Google Scholar]
  29. Kunz S., Campbell K. P., Oldstone M. B. A. 2003; α -Dystroglycan can mediate arenavirus infection in the absence of β -dystroglycan. Virology 316:213–220 [CrossRef]
    [Google Scholar]
  30. Lafont F., Simons K. 2001; Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon IgE-triggered cell signaling. Proc Natl Acad Sci U S A 98:3180–3184 [CrossRef]
    [Google Scholar]
  31. Lakadamyali M., Rust M. J., Zhuang X. 2004; Endocytosis of influenza viruses. Microbes Infect 6:929–936 [CrossRef]
    [Google Scholar]
  32. Lambert D., O'Neill C. A., Padfield P. J. 2005; Depletion of Caco-2 cell cholesterol disrupts barrier function by altering the detergent solubility and distribution of specific tight-junction proteins. Biochem J 387:553–560 [CrossRef]
    [Google Scholar]
  33. Lang M. L., Chen Y.-W., Shen L., Gao H., Lang G. A., Wade T. K., Wade W. F. 2002; IgA Fc receptor (Fc α R) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J 364:517–525 [CrossRef]
    [Google Scholar]
  34. Langenbach K. J., Rando T. A. 2002; Inhibition of dystroglycan binding to laminin disrupts the PI3K/AKT pathway and survival signaling in muscle cells. Muscle Nerve 26:644–653 [CrossRef]
    [Google Scholar]
  35. Le P. U., Guay G., Altschuler Y., Nabi I. R. 2002; Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 277:3371–3379 [CrossRef]
    [Google Scholar]
  36. Li S., Harrison D., Carbonetto S., Fässler R., Smyth N., Edgar D., Yurchenco P. D. 2002; Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol 157:1279–1290 [CrossRef]
    [Google Scholar]
  37. Mañes S., Mira E., Gómez-Mouton C., Zhao Z. J., Lacalle R. A., Martínez-A C. 1999; Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol Cell Biol 19:3125–3135
    [Google Scholar]
  38. Mañes S., del Real G., Martínez-A C. 2003; Pathogens: raft hijackers. Nat Rev Immunol 3:557–568 [CrossRef]
    [Google Scholar]
  39. Matsumura K., Yamada H., Saito F., Sunada Y., Shimizu T. 1997; The role of dystroglycan, a novel receptor of laminin and agrin, in cell differentiation. Histol Histopathol 12:195–203
    [Google Scholar]
  40. Moiseeva E. P. 2001; Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52:372–386 [CrossRef]
    [Google Scholar]
  41. Montanaro F., Lindenbaum M., Carbonetto S. 1999; α -Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J Cell Biol 145:1325–1340 [CrossRef]
    [Google Scholar]
  42. Montesano R., Roth J., Robert A., Orci L. 1982; Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653 [CrossRef]
    [Google Scholar]
  43. Montixi C., Langlet C., Bernard A.-M., Thimonier J., Dubois C., Wurbel M.-A., Chauvin J.-P., Pierres M., He H.-T. 1998; Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 17:5334–5348 [CrossRef]
    [Google Scholar]
  44. Palazzo A. F., Eng C. H., Schlaepfer D. D., Marcantonio E. E., Gundersen G. G. 2004; Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303:836–839 [CrossRef]
    [Google Scholar]
  45. Parton R. G., Richards A. A. 2003; Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738 [CrossRef]
    [Google Scholar]
  46. Pelkmans L., Helenius A. 2003; Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422 [CrossRef]
    [Google Scholar]
  47. Pfeiffer A., Böttcher A., Orsó E. & 21 other authors 2001; Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164 [CrossRef]
    [Google Scholar]
  48. Pierini L. M., Eddy R. J., Fuortes M., Seveau S., Casulo C., Maxfield F. R. 2003; Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278:10831–10841 [CrossRef]
    [Google Scholar]
  49. Popik W., Alce T. M. 2004; CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4. J Biol Chem 279:704–712 [CrossRef]
    [Google Scholar]
  50. Popik W., Alce T. M., Au W.-C. 2002; Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol 76:4709–4722 [CrossRef]
    [Google Scholar]
  51. Rambukkana A., Yamada H., Zanazzi G., Mathus T., Salzer J. L., Yurchenco P. D., Campbell K. P., Fischetti V. A. 1998; Role of α -dystroglycan as a Schwann cell receptor for Mycobacterium leprae . Science 282:2076–2079 [CrossRef]
    [Google Scholar]
  52. Russo K., Di Stasio E., Macchia G., Rosa G., Brancaccio A., Petrucci T. C. 2000; Characterization of the β -dystroglycan–growth factor receptor 2 (Grb2) interaction. Biochem Biophys Res Commun 274:93–98 [CrossRef]
    [Google Scholar]
  53. Sánchez-San Martin C., López T., Arias C. F., López S. 2004; Characterization of rotavirus cell entry. J Virol 78:2310–2318 [CrossRef]
    [Google Scholar]
  54. Schwartz A. L. 1995; Receptor cell biology: receptor-mediated endocytosis. Pediatr Res 38:835–843 [CrossRef]
    [Google Scholar]
  55. Sciandra F., Schneider M., Giardina B., Baumgartner S., Petrucci T. C., Brancaccio A. 2001; Identification of the β -dystroglycan binding epitope within the C-terminal region of α -dystroglycan. Eur J Biochem 268:4590–4597 [CrossRef]
    [Google Scholar]
  56. Shigematsu S., Watson R. T., Khan A. H., Pessin J. E. 2003; The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J Biol Chem 278:10683–10690 [CrossRef]
    [Google Scholar]
  57. Simons K., Ikonen E. 1997; Functional rafts in cell membranes. Nature 387:569–572 [CrossRef]
    [Google Scholar]
  58. Simons K., Toomre D. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39
    [Google Scholar]
  59. Smalheiser N. R., Schwartz N. B. 1987; Cranin: a laminin-binding protein of cell membranes. Proc Natl Acad Sci U S A 84:6457–6461 [CrossRef]
    [Google Scholar]
  60. Spence H. J., Dhillon A. S., James M., Winder S. J. 2004; Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep 5:484–489 [CrossRef]
    [Google Scholar]
  61. Sugita S., Saito F., Tang J., Satz J., Campbell K., Südhof T. C. 2001; A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445 [CrossRef]
    [Google Scholar]
  62. Talts J. F., Andac Z., Göhring W., Brancaccio A., Timpl R. 1999; Binding of the G domains of laminin α 1 and α 2 chains and perlecan to heparin, sulfatides, α -dystroglycan and several extracellular matrix proteins. EMBO J 18:863–870 [CrossRef]
    [Google Scholar]
  63. Thorp E. B., Gallagher T. M. 2004; Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol 78:2682–2692 [CrossRef]
    [Google Scholar]
  64. van Deurs B., Roepstorff K., Hommelgaard A. M., Sandvig K. 2003; Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100 [CrossRef]
    [Google Scholar]
  65. von Tresckow B., Kallen K.-J., von Strandmann E. P., Borchmann P., Lange H., Engert A., Hansen H. P. 2004; Depletion of cellular cholesterol and lipid rafts increases shedding of CD30. J Immunol 172:4324–4331 [CrossRef]
    [Google Scholar]
  66. Yamada H., Denzer A. J., Hori H. & 7 other authors 1996; Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem 271:23418–23423 [CrossRef]
    [Google Scholar]
  67. Yang B., Jung D., Motto D., Meyer J., Koretzky G., Campbell K. P. 1995; SH3 domain-mediated interaction of dystroglycan and Grb2. J Biol Chem 270:11711–11714 [CrossRef]
    [Google Scholar]
  68. Young R. M., Holowka D., Baird B. 2003; A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 278:20746–20752 [CrossRef]
    [Google Scholar]
  69. Zhan Y., Tremblay M. R., Melian N., Carbonetto S. 2005; Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J Biol Chem 280:18015–18024 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81444-0
Loading
/content/journal/jgv/10.1099/vir.0.81444-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error