1887

Abstract

Recombinant viruses based on modified vaccinia virus Ankara (MVA) are vaccine candidates against infectious diseases and cancers. Presently, multiplication of MVA has been demonstrated in chicken embryo fibroblast and baby hamster kidney (BHK-21) cells only. The multiplication and morphogenesis of a recombinant (MVA-HANP) and non-recombinant MVA strain in BHK-21 and 12 other mammalian cell lines have now been compared. Rat IEC-6 cells were fully permissive to MVA infection. The virus yield in IEC-6 cells was similar to that obtained in BHK-21 cells at low as well as high multiplicities of infection. Vero cells were semi-permissive to MVA infection. Mature virions were produced in supposedly non-permissive cell lines. The multiplication and morphogenesis of non-recombinant MVA and MVA-HANP were similar. These results are relevant to the production and biosafety of MVA-vectored vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81479-0
2006-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/1/21.html?itemId=/content/journal/jgv/10.1099/vir.0.81479-0&mimeType=html&fmt=ahah

References

  1. Ali A. N., Turner P. C., Brooks M. A., Moyer R. W. 1994; The SPI-1 gene of rabbitpox virus determines host range and is required for hemorrhagic pock formation. Virology 202:305–314 [CrossRef]
    [Google Scholar]
  2. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  3. Beattie E., Kauffman E. B., Martinez H., Perkus M. E., Jacobs B. L., Paoletti E., Tartaglia J. 1996; Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12:89–94 [CrossRef]
    [Google Scholar]
  4. Blanchard T. J., Alcami A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  5. Caroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211 [CrossRef]
    [Google Scholar]
  6. Carter G. C., Law M., Hollinshead M., Smith G. L. 2005; Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J Gen Virol 86:1279–1290 [CrossRef]
    [Google Scholar]
  7. Corona Gutierrez C. M., Tinoco A., Lopez Contreras M., Navarro T., Calzado P., Vargas L., Reyes L., Posternak R., Rosales R. 2002; Clinical protocol. A phase II study: efficacy of the gene therapy of the MVA E2 recombinant virus in the treatment of precancerous lesions (NIC I and NIC II) associated with infection of oncogenic human papillomavirus. Hum Gene Ther 13:1127–1140 [CrossRef]
    [Google Scholar]
  8. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. 1998; Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79:347–352
    [Google Scholar]
  9. Drexler I., Staib C., Sutter G. 2004; Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential?. Curr Opin Biotechnol 15:506–512 [CrossRef]
    [Google Scholar]
  10. Gallego-Gomez J. C., Risco C., Rodriguez D., Cabezas P., Guerra S., Carrascosa J. L., Esteban M. 2003; Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells. J Virol 77:10606–10622 [CrossRef]
    [Google Scholar]
  11. Gillard S., Spehner D., Drillien R. 1985; Mapping of a vaccinia virus host range sequence by insertion into the viral thymidine kinase gene. J Virol 53:316–318
    [Google Scholar]
  12. Hanke T., McMichael A. J., Dennis M. J., Sharpe S. A., Powell L. A., McLoughlin L., Crome S. J. 2005; Biodistribution and persistence of an MVA-vectored candidate HIV vaccine in SIV-infected rhesus macaques and SCID mice. Vaccine 23:1507–1514 [CrossRef]
    [Google Scholar]
  13. Hansen H., Okeke M. I., Nilssen Ø., Traavik T. 2004; Recombinant viruses obtained from co-infection in vitro with a live vaccinia-vectored influenza vaccine and a naturally occurring cowpox virus display different plaque phenotypes and loss of the transgene. Vaccine 23:499–506 [CrossRef]
    [Google Scholar]
  14. Hollinshead M., Rodger G., van Eijl H., Law M., Hollinshead R., Vaux D. J., Smith G. L. 2001; Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402 [CrossRef]
    [Google Scholar]
  15. Hornemann S., Harlin O., Staib C., Kisling S., Erfle V., Kaspers B., Hacker G., Sutter G. 2003; Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J Virol 77:8394–8407 [CrossRef]
    [Google Scholar]
  16. Krijnse-Locker J., Kuehn A., Schleich S., Rutter G., Hohenberg H., Wepf R., Griffiths G. 2000; Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 11:2497–2511 [CrossRef]
    [Google Scholar]
  17. McKelvey T. A., Andrews S. C., Miller S. E., Ray C. A., Pickup D. J. 2002; Identification of the orthopoxvirus p4c gene, which encodes a structural protein that directs intracellular mature virus particles into A-type inclusions. J Virol 76:11216–11225 [CrossRef]
    [Google Scholar]
  18. Meiser A., Boulanger D., Sutter G., Krijnse-Locker J. 2003a; Comparison of virus production in chicken embryo fibroblasts infected with the WR, IHD-J and MVA strains of vaccinia virus: IHD-J is most efficient in trans -Golgi network wrapping and extracellular enveloped virus release. J Gen Virol 84:1383–1392 [CrossRef]
    [Google Scholar]
  19. Meiser A., Sancho C., Krijnse-Locker J. 2003b; Plasma membrane budding as an alternative release mechanism of the extracellular enveloped form of vaccinia virus from HeLa cells. J Virol 77:9931–9942 [CrossRef]
    [Google Scholar]
  20. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J Gen Virol 72:1031–1038 [CrossRef]
    [Google Scholar]
  21. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Limbach K., Norton E. K., Paoletti E. 1990; Vaccinia virus host range genes. Virology 179:276–286 [CrossRef]
    [Google Scholar]
  22. Quaroni A., Wands J., Trelstad R. L., Isselbacher K. J. 1979; Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol 80:248–265 [CrossRef]
    [Google Scholar]
  23. Ramirez J. C., Finke D., Esteban M., Kraehenbuhl J. P., Acha-Orbea H. 2003; Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Arch Virol 148:827–839 [CrossRef]
    [Google Scholar]
  24. Risco C., Rodriguez J. R., Lopez-Iglesias C., Carrascosa J. L., Esteban M., Rodriguez D. 2002; Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J Virol 76:1839–1855 [CrossRef]
    [Google Scholar]
  25. Sancho M. C., Schleich S., Griffiths G., Krijnse-Locker J. 2002; The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J Virol 76:8318–8334 [CrossRef]
    [Google Scholar]
  26. Schmelz M., Sodeik B., Ericsson M., Wolffe E., Shida H., Hiller G., Griffiths G. 1994; Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68:130–147
    [Google Scholar]
  27. Smith G. L., Law M. 2004; The exit of vaccinia virus from infected cells. Virus Res 106:189–197 [CrossRef]
    [Google Scholar]
  28. Smith C. L., Dunbar P. R., Mirza F. & 9 other authors 2005; Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int J Cancer 113:259–266 [CrossRef]
    [Google Scholar]
  29. Sodeik B., Krijnse-Locker J. 2002; Assembly of vaccinia virus revisited: de novo membrane synthesis or acquisition from the host?. Trends Microbiol 10:15–24 [CrossRef]
    [Google Scholar]
  30. Spehner D., Drillien R., Proamer F., Houssais-Pecheur C., Zanta M.-A., Geist M., Dott K., Balloul J.-M. 2000; Enveloped virus is the major virus form produced during productive infection with modified vaccinia virus Ankara strain. Virology 273:9–15 [CrossRef]
    [Google Scholar]
  31. Stittelaar K. J., Kuiken T., de Swart R. L. 8 other authors 2001; Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19:3700–3709 [CrossRef]
    [Google Scholar]
  32. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040 [CrossRef]
    [Google Scholar]
  33. Tooze J., Hollinshead M., Reis B., Radsak K., Kern H. 1993; Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur J Cell Biol 60:163–178
    [Google Scholar]
  34. Wang Z., Chen W.-W., Li R.-R., Wen B., Sun J.-B. 2003; Effect of gastrin on differentiation of rat intestinal epithelial cells in vitro . World J Gastroenterol 9:1786–1790
    [Google Scholar]
  35. Weingart H., Czub M., Czub S. & 18 other authors 2004; Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 78:12672–12676 [CrossRef]
    [Google Scholar]
  36. Wood S. R., Zhao Q., Smith L. H., Daniels C. K. 2003; Altered morphology in cultured rat intestinal epithelial IEC-6 cells is associated with alkaline phosphatase expression. Tissue Cell 35:47–58 [CrossRef]
    [Google Scholar]
  37. Wyatt L. S., Earl P. L., Eller L. A., Moss B. 2004; Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci U S A 101:4590–4595 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81479-0
Loading
/content/journal/jgv/10.1099/vir.0.81479-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error